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It is shown that the vortex lines possessing a thickness which is inversely proportional to the 
square root of the gas density and of the intensity of the interaction may exist in Bose gases 
with weak repulsion between the atoms. The energy of a vortex line is computed. It is also 
shown that in the presence of a vortex line a branch appears in the energy spectrum of the 
gas which corresponds to oscillations of the vortex. 

1. INTRODUCTION 

As is known, according to Onsager1 and Feyn­
man,2 vortex lines can exist in a superfluid, i.e., 
certain special lines, around which the superfluid 
part of the liquid rotates with a velocity 

1i 
V=S mr' (1) 

where m is the mass of the atom of the liquid, r 
is the distance to the special line, which is known 
as a vortex axis, and s is an integer. A certain 
energy is associated with each vortex line and can 
be computed in general form with logarithmic ac­
curacy. To be precise, the energy per unit length 
of line is equal (here and in what follows we speak 
only about conditions at absolute zero of tempera­
ture) 

E = s2 n1i2n In !i_ 
m r 0 ' 

(2) 

where n is the number of atoms of liquid per unit 
volume, R is the characteristic dimension of the 
vessel, r 0 is a quantity which has the meaning of 
the length of the vortex axis (it is assumed that 
R » r 0). In the case of real helium, r 0 has the 
order of interatomic distances. It is seen from 
(2) that the vortex lines with s > 1 are energetic­
ally unfavorable, inasmuch as two lines with s = 1 
have less energy than a single line with s > 1. 
Therefore, only lines with s = 1 can really exist. 
We shall consider only such in what follows. 

Vortex lines are capatlle of performing vibra­
tions. In this case, when the wavelength of _such 
vibrations is much greater than r 0, these vibra­
tions differ in no way from the vibrations of vor­
tices in an ordinary ideal liquid, and have the dis­
persion law (see references 3 - 5) 
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1ik2 1 
w =-In- (kr0 ~1) (3) 2m kr0 ~ 

( w is the frequency, k is the wave vector of the 
vibration). Thus the existence of vortex lines in 
a liquid leads to the appearance of a new "one­
dimensional" branch of elementary excitations. 

The existence of vortex lines in rotating helium 
II was shown experimentally by Hall and Vinen, and 
cannot be doubted today. Nevertheless, it should 
be kept in mind that the vortices were predicted 
by Onsager and Feynman on the basis of semi­
qualitative considerations, inasmuch as the wave 
function of the liquid employed by Feynman cannot 
be obtained from general principles. Therefore 
there is definite interest in investigating vortex 
lines on a simple model in which calculations can 
be carried through to the end. Such a model is the 
imperfect Bose gas with weak repulsion between 
atoms, which has been considered in detail by 
Bogolyubov. 6 The purpose of the present research 
is the investigation of vortex lines in such a gas. 
The method which we shall use is a generalization 
of the method of Bogolyubov to a spatially inhomo­
geneous state. 

2. THE VORTEX LINE IN AN IMPERFECT BOSE 
GAS 

We sb.all consider a Bose gas with weak pair 
repulsions between atoms. The Hamiltonian of 
such a system in the second quantization represen­
tation has the form 

We shall assume that the potential is short range, 
and that the gas is sufficiently rarefied, i.e., that 
the range of the potential is much less than the 
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distance between particles. In this case, we can 
remove the lf! operator from under the integral 
sign over dT1 and obtain* 

fl = H- 2~ 1jJ+~1jJ + {-g'IJ+'P+'P'P} dT, 

g = ~ U (r) d-r. (5) 

The Hamiltonian (5) corresponds to the equation 
of motion for the Heisenberg operator lf! 

... alP - - }i!_ A ·h + + 
lr• at - 2m Ll'l' ' g'IJ 'IJ'IJ. (6) 

Just as was done by Bogolyubov, 6 we divide the op­
erator into two parts: 

(7) 

where a0 is a number, and J. is a small operator 
correction. However, inasmuch as the system is 
no longer homogeneous in space in the presence 
of a vortex, we shall assume that a 0 is not a con­
stant, but is a certain function of the coordinates. t 

Substituting (7) in (6), and combining terms of 
zero order, we get 

(8) 

Assuming that a0 depends on time according to 
the law e-iEot/li, we get 

1;.2 ( 
- 2m ~ao- Eoao + g I ao 12 ao = 0. 9) 

An equation of such a form has already been con­
sidered by Ginzburg and the author9 in connection 
with the phenomenological theory of superfluidity 
close to the A. point. (Of course, the coefficients 
of the equation there have an entirely different 
meaning.) 

The vortex lines correspond to the solution of 
(9) possessing a symmetry relative to some axis. 
Transforming to cylindrical coordinates r, <p, z, 
and setting 

proaches a certain constant ..fil; as r-oo; n0 

obviously has the meaning of density of particles 
in the condensed state and at an infinite distance 
from the line; with accuracy up to terms ,.., g3/ 2, 

it is identical with the total density of the gas. It 
follows from (10) that the constant E0 is related 
to n0 by the formula 

Taking this into account, we find that a0 can be 
written in the form 

ao = V no exp i(cp- gn0t/1i) 'i'o (r/r0), 

'o = 1i !V2mgno. 

l/Jo( ~) is a real function satisfying the equation 

~ ~ ; ~~_o_ + (I - ;. ) 'Po -1jJ~ = 0, 

(11) 

(12) 

(13) 

'Po (0) = 0, 'Po (oo) = 1. (14) 

The graph of the function lf!o was given earlier by 
Ginzburg and the author.9 For ~- 0, we have 
lf!o,.., ~. For large ~ » 1, 

Equation (12) describes the vortex line with 
s = 1. 

(15) 

The quantity r 0 obviously has the meaning of 
the length of the vortex line. It is seen from (12) 
that the mean velocity of particles around the line 
is equal to n/mr, as it ought to be. 

As was shown in reference 6, the smallness of 
the amplitude of scattering of particles mg/ 411fi2, 

in comparison with the mean distance between 
particles, serves as the condition for applicabil­
ity of the approximation (7): 

mg jn 2 ~ n-;;'1, = n-'1•. (16) 

n is the number density of the particles. Upon sat­
isfaction of the conditions (16), 

r0 ~ n-'1.. (17) 

we obtain the following equation for F: 

1i2 1 d dF 1i2 a 
-2m 7Tr'dr + 2mr2 F- EoF + gF = 0· 

Thus the condition for applicability of these formu­
las reduces to the requirement that the length of 

(10) the vortex be large in comparison with the inter­
atomic distances. This means that in the rarefied 

As was shown in reference 9, Eq. (10) has a so­
lution which vanishes as r - 0, and which ap-

*It is actually impossible to use Eq. (5) directly in calcula­
tions to higher orders of g. This is connected with the neces­
sity of carrying out a renormalization of the scattering ampli­
tude of particles (see reference 7). However, we shall not cal­
culate terms of higher order. 

tinhomogeneous ground states of a Bose system were in­
vestigated by Gross• without connection to the problem of vor­
tex lines. 

gas the vortex line is a macroscopic formation. 
The same condition is also necessary for applica­
bility of the equations previously introduced. 9 How­
ever, in this case, this condition was guaranteed 
in reference 9 by the closeness to the A. point, 
while in our case it was guaranteed by the rare­
fied character of the gas. 

The resultant formulas make it possible to 
compute the energy of the vortex line with non­
logarithmic accuracy. For this purpose it is nee-
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essary to substitute a0 from (12) in (5) in place of 
1/J and integrate over the volume. In this case, the 
term proportional to the volume gives simply the 
energy of the homogeneous gas, while the term which 
depends logarithmically on the volume is the en­
ergy of the vortex. Numerical integration, results 
of which are taken from the work of Ginzburg and 
the author, 9 gives the following expression for the 
unit length of line located in the center of a cylin­
drical vessel of radius R: 

(18) 

3. VffiRATIONS OF THE VORTEX LINE 

In the present section we shall show that there 
is actually a branch in the energy spectrum of the 
Bose gas in the presence of a vortex line with the 
dispersion law (3). To find the energy spectrum 
of a weakly perturbed state, it is necessary to 
substitute 1/J in (6) with accuracy up to terms '""'J. 
We have 

We write J in the form 

ft~ef('<'-E,tfn>""jJbt(k, r)ei(kz+i'<') (/=0, ±1, ±2, ... ). 

'· k 

Further, substituting in (19) and taking (12) into 
account, we obtain a set of linear equations for 
bz(k) and b~z(-k): 

iti abt (kl = ~- !!':_ [_.!_ _!_ r _!_- (l + 1)2- k2] b (k) 
at 2m r ar ar r2 l 

+ gn0 (2'¢~- I) b, (k) + gn0"¢~b:._t (- k), 

. ab:._t (- k) __ !:!___ [_!_ _!_ r _!_ _ (l- 1)2 
tti at - 2m r ar ar f 2 

- k2 j b:._t (- k)+ gn0 (2'¢~- I) lLt (- k) + gn0"¢gbz(k). 
(20) 

As is known, the energy levels of each linear 
quantum-mechanical system are determined by the 
characteristic frequencies of the corresponding 
classical problem. Therefore, in finding the en­
ergy spectrum, it suffices for us to find the char­
acteristic frequencies of the system (20), assum­
ing that bz(k) and b~z(-k) are simply certain 
classical functions of the coordinates. Among 
the solutions of the system (20) there are functions 
which decay exponentially as r - oo, and functions 
which oscillate as r - oo • The latter clearly de­
scribe phonons which are scattered by the vortex. 
The first correspond to the excited states of the 
vortex line itself. 

A complete investigation of the characteristic 
values of the system (20) is very complicated, and 
there is scarcely any direct relation to the prop­
erties of real vortex lines in helium II. Actually, 
the "macroscopic" vortex in the gas probably has 
a much higher degree of freedom and energy lev­
els than the vortex in helium having an atomic 
thickness. We therefore limit ourselves only to 
showing that among the solutions of (20) there 
are actually long wavelength vibrations with the 
dispersion law (3). 

First of all we must determine precisely how 
the values of l correspond to the vibrations (3). 
For this purpose we note that as k- 0 these vi­
brations simply transform into a displacement of 
the vortex as a whole. In this case a 0 is changed 
evidently by the value 

~ 6 r ( ) aao 1 . ( ) aao "] f}o = un,?ao = r cos qJ- (jlo 7fr ---,:-sm c:p -(jlo Cf<p- ' 

(21) 
where or = or (or' cpo) = displacement vector. 
Therefore our equations should admit a solution 
of the form (21) for k = 0. 

Equation (21) contains terms '""'eicpe±icp, i.e., 
terms with l = ± 1. Thus the vibrations of interest 
to us are described by Eqs. (20) with l = ± 1. We 
write down equations with l = - 1, assuming that 
b_1, bf""' e-iwt, and transform to dimensionless 
variables. We obtain 

( ~ ~ ~ ~- : 2 - X2) f + (2"¢~- I) f + 'i'U1 = -ef, 

(22) 

Here 

£ = r/r0 , x = kr0 , e =tiro/Eo, b: (k) = e-iu.t JltU;f, 

b_] (-k) = e-'"'1 Vtl;,t1. 
It is quite simple to establish the fact that, as 

it should follow from (21), Eqs. (22) satisfy the 
regular functions 

f0 = (d'¢o Ids- 'Po/£)' ~~ = (d'\jJO Ids + 'i'o I s) (23) 
for K = 0 and E = 0 at ~ = 0. 

We transform to a solution (22) for K « 1. We 
initially consider distances ~ « 1/K. In this case, 
we can neglect K2 in the equations and look for a 
solution in the form 

f = f0 + ef', f1 = fi + e[I, (24) 

where on the right hand side of the equations, we 
can substitute f0 and ~ for f and f1: 

(i~~~-~)t' +(2\jJ~-I)f' +'P~f{=-[0, 

i~s~t~ +(2'¢~-ll t~ +'ll~f'= t~- (25) 
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We directly verify that the system (25) has a 
regular solution at zero of the form 

' 1 1 f = -z6'1lo· f~ =- 26'Po· (26) 

We shall not set forth the construction details 
of this solution. We only note that it is connected 
with the existence in Eq. (8) of solutions describing 
the motion of the gas as a whole together with the 
vortex filament, i.e., in the final analysis with Gali­
lean invariance of the initial equations. 

We now consider the region of separation ~ » 1. 
It is seen from (23) that at such distances 

t-h~f +h· (27) 

This inequality has a simple physical meaning. It 
is easy to see that the quantity f + f1 is propor­
tional to the perturbation of the density around the 
vortex, while f - f1 is the perturbation of the ve­
locity potential. The second perturbations fall off 
more rapidly than the first. We subtract the sec­
ond equation of (22) from the first and everywhere 
write 

As a result we get 

(f ~ 6 ~ - ~ - x2) (f - [I) = 0. (28) 

The solution of Eq. (28) which vanishes at infinity 
has the form 

t- f1 = CK1 (xs). (29) 
where K is a modified Bessel function of second 
order (see, for example, reference 10, page 30). 

At ~ « 1/K we find from (29), with accuracy 
up to terms ,... K In K, 

f- f1 ::::: c(I!x6 + i-sx In x). (30) 

On the other hand, it follows from (29) and (26) that 
for ~ » 1 

f- ft:::::; -(2/6- e6). (31) 

For 1 « ~ « 1/K, Eqs. (28) and (29) should coin­
cide, whence we find 

e = -x2 1n x 

for, transforming to dimensional quantities, 

- M• 1 ___!__ - 'ltk• 1 f2gmno 
ffi - 2m n kr 0 - 2m n k'li ' 

which is identical with (3). 
We note in closing that perturbations with the 

dispersion law (3) are not entirely stable in the 
sense that any perturbation with k ~ 0 possesses 
a finite lifetime. This is connected with the fact 
that an arbitrary perturbation with k ;tt 0 can under 
such a dispersion law decay into three perturba­
tions with lesser k. (Decay into two perturbations 
in the one-dimensional case is impossible because 
of the zero statistical weight of such a process. ) 
Of course, this observation applies to the vibra­
tions of vortices both in a gas and in a liquid. 

In conclusion, the author expresses his thanks 
to Academician L. D. Landau for useful discussion. 
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