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We have solved the Bogolyubov equation for the energy gap in a superconductor for the aniso­
tropic case. We show that in the weak coupling approximation a change in temperature leads 
to a change in the magnitude of the gap by a factor which is independent of the direction. The 
general behavior of the change in the thermodynamic quantities is qualitatively the same as 
in the isotropic case. The relative jump in the specific heat turns out to be larger than 1.4. 
An inequality of the same kind is also obtained for the critical magnetic field near the abso­
lute zero. 

THE theory of superconductivity was developed for 
an isotropic model. 1•2 The isotropic theory agrees 
qualitatively very well with experiment, but it does 
not agree completely quantitatively. From this 
theory it follows, for instance, that the relative 
jump in the specific heat AC/Cn at the transition 
point should be equal to 1.4 for all superconductors, 
while this quantity varies in practice from metal 
to metal. Furthermore, the isotropic theory gives 
for the low-temperature behavior of the relative 
critical field the relation 

Picr(T) I Hcr(O) = I - X (T I 'fer)\ 

where x = 1.06. Experimentally, x turns also out 
to be different for different superconductors. 

The temperature dependence of the specific heat 
differs rather much from that predicted by theory. 
Moreover, experimental results3•4 show that the 
energy gap possesses a well defined anisotropy in 
some superconductors. It is thus of interest to 
develop a theory for anisotropic superconductors. 

Bogolyubov et al. 2 obtained for the energy gap 
A( p) at absolute zero an equation which is also 
sqitable for the anisotropic case 

!!. (p) = g~ U(p, p') ~i;:; d3p'. (1) 

Here g is the dimensionless coupling constant 
( g « 1 ) , U ( p, p' ) the interaction potential of two 
pairs of electrons with momenta and spins in op­
posite directions, E(p) = v'~2(p) +A2(p), where 
~(p) = VF(P- PF), while VF and PF are the 
velocity and momentum on the Fermi surface. 

The integration in (1) is performed in such a 
way that the values of ~' = HP') lie between ±w 
where w is the De bye frequency. We are inter-

ested in values of p and p' such that I~ 1. I e I 
;S w. In that region U(p, p'), A(p), and A(p') 
may be assumed to depend only on the directions 
n = p/p and n' = p' /p'. Taking this into account 
and integrating over ~ in (1) we find 

!!. (n) = g ~ U (n, n') 11 (n') ln !J. ~:') d:~ , (2) 

where da' is an elementary area on the Fermi 
surface. 

Taking into account that g is small, we write 
the solution of Eq. (2) in the form 

!!. (n) = 2wqJ (n) ~-A!g, (3) 

where 'P ( n) is a dimensionless function, and A a 
constant quantity of the order of magnitude of unity. 
Substituting (3) into (2) we get in the first non­
vanishing approximation for qJ ( n) the equati-on 

\ de;' 
IJl (n) = A~ U(n, n') qJ (n') -,- . 

• VF 
(4) 

Equation (4) is a homogeneous Fredholm type inte­
gral equation. One can easily symmetrize the ker­
nel of Eq. (4). The quantity A is thus an eigen­
value of Eq. (4) and 'P (n) an eigenfunction of this 
equation. 

We shall show that A is the lowest eigenvalue. 
.Jndeed, the energy of the superconducting ground~ 
state Es is a functional of A2(n) and the energy 
of the normal state En is obtained from Es by 
putting A(n) = 0. The difference En - Es is thus 
in first approximation a homogeneous quadratic 
functional of A2(n) and is according to (3) propor­
tional to exp (- 2A/g ). Es will thus be a 
minimum when A is a minimum. We note that by 
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virtue of a well-known theorem ~(D) has no zeroes 
on the Fermi surface. 

We denote by if; (D) the normalized solution of 
Eq. (4) which corresponds to the lowest eigenvalue. 
In that case cp(D) = Qif; (D). To find the constant Q 
we must solve the next approximation. Putting 
cp(D) = Qif; (D)+ cp 1 (D) we get for cp1 (D) the equa­
tion 

<p1 (n) = A\ U (n, n') <p1 (n') ~ J Vp 

- gQ \' U (n, n') 'IIJ (n') In (Q'IIJ (n')) d~' . 
j VF 

(5) 

This is an inhomogeneous Fredholm type equation 
and it is known that the corresponding homogen­
eous equation has a solution. 

The condition that (5) have a solution gives, if 
one takes (4) into account, an equation for Q: 

\' 'IIJ2 (n) In ( Q'IIJ (n)) ~ = 0. J VF 
(6) 

If we write the normalization condition for if;( D) in 
the form 

\'IIJ2 (n)~ = 1, J PoVp 
(7) 

where Po is a quantity of the order of magnitude of 
the momentum on the Fermi surface, we get from 
(6) 

Q = exp {- \' 'ljl2 (n) In 'ljJ (n) ~}. J PoVp 
(8) 

We note that Eq. (8) and also the further cal­
culations remain valid also when w is assumed to 
be a function of the direction w (D), so long as we 
substitute in (3) instead of w a constant quantity 
w such that 

In w = 'ljl2 (n) In w (n) -- . - ~ ~ 
PoVp 

(9} 

In the following we shall thus assume, without sac­
rificing generality, that w is constant. 

We now turn to the case of finite temperatures. 
In that case we must solve the equation 

1'1 (p) = g ~ U(p, p') :(~/ [I - 2f (~e (p'))] d3p', (10) 

where f(x) =(eX+ 1)-1• As in the previous case, 
Eq. (9) leads to an integral equation on the Fermi 
surface: 

1'1 (n) = g ~ U (n, n') [In 1'12~,)- F (~1'1 (n')) J ~: , (11) 

where 
co 

F (x) = ~ dy (y2 + !)-•·, f (x V y2 + 1). (12) 

The function F ( x) was studied in great detail 

in the survey of Abrikosov and Khalatnikov. 5 As 
x- oo it tends to zero as e-x, and as x- 0 it 
behaves asymptotically as 

f (x) =-In (yx;n) + A.x2 , (13) 

where ln 'Y is Euler's constant and A.= ( 7 /87T2 )t( 3 ). 
We look again for a solution of Eq. (11) in the 

form given by (3). In zeroth approximation we get 
again (4) so that cp(D) = Qif; (D), as before, but Q 
is now a function of the temperature. We can thus 
make the following statement: when the tempera­
ture is changed the magnitude of the energy gap in 
different directions will change in the same ratio. 
This conclusion can, apparently, be verified ex­
perimentally. We get for the function Q ( T ) the 
equation 

tn ~ (roi + ~ 'ljl2 (n) F <~ Q <n 'ljJ (n)) p~~F = o. (14) 

It is clear from Eq. (14) that Q ( T) < Q( 0 ). 
Equation (14) becomes unsuitable near the trans­

ition temperature where Q ( T) is small, because 
F diverges logarithmically. Using the asymptotic 
expression (13) for this case we get from (10) 

1'1 (n) = g ~ U (n, n') t1 (n') [In 2w~ ~ -A. (~1'1 (n'))2j ~: , 
(15) 

from which we get in zeroth approximation in 
( T - T cr) IT cr a solution in the same form as 
(3), while the transition temperature is determined 
by the equation 

Tcr = (y/n) 2we-A!g. (16} 

Near the transition point the equation for Q ( T) is 
of the form 

T -T Q2 = A-c_r_, 
Tcr 

Comparing the results obtained here with the 
solution of the equation for the gap in the isotropic 
case, we see that the picture of the behavior of the 
gap as a function of the temperature is not changed 
qualitatively. 

We consider now how the anisotropy of the super­
conductor affects its specific heat Cs ( T ) . Using 
the well-known formula for the entropy 

S (T) = - 2 ~ {f (~e) In f (~e) 
p 

+ [1- f (~e)] In (l- f (~e))} (18) 

and differentiating it with respect to the tempera­
ture, we get after some simple transformations 
the equation 
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(25) d 2 (' ,1 ,1 do 
Cs(T) = - ~ df3 (2n) a .\ G (~ ) V"; ' 

co 

G (x) = 2x ~ ch 2<p f(x ch <p)d<p. (19) * 
0 

The asymptotic behavior of G( x) was also given 
in reference 5: 

G (x) = n,2/3x- x/2 + 7~ (3) x3/l6:n:2 , X-> 0, 

G (x) = l12:n:xe-x, X --> 00. (20} 

Near the transition point we get 

(21} 

where A is defined by (17}. The value of the spe­
cific heat of the normal phase Cn at the transition 
point is obtained from (21) by setting A equal to 
zero. We get thus for the jump in the specific heat 

L1C!Cn ('fc,.) = 3A/2j2 . (22) 

(We chose Po by putting J do/p0vF = 1.) 
We compare now the value of A determined by 

(17} with the corresponding magnitude of Ais in 
the isotropic model 

.,,;-
Cs (T) = ::l~ 'y Llmin exp { -- Q (0) tiJminrtT cr/ yT}. 

From Eq. (8) the inequality Q ( 0) < 1/IPmin 
follows. The specific heat of an anisotropic super­
conductor is thus as function of the reduced tem­
perature exponentially larger than the value which 
is predicted by the isotropic model. This result 
obtained already by Abrikosov and Khalatnikov5 is 
well substantiated by experimental data. 

In the intermediate temperature range the devi­
ation of the specific heat from the curve obtained 
using the isotropic model must be large according 
to (19). Experimentally this deviation reaches, 
indeed, 30-40% (for instance, 7 for Zn and Al at 

T"'% Tar>· 
To find the critical magnetic field we use the 

appropriate expression from the Bardeen-Cooper­
Schrieffer ( BCS) theory [see, for instance, refer­
ence 5, Eq. (3.37}] but we must replace the quantity 
v = pg/ 1r2vF in the anisotropic case by an integral 
operator on the Fermi surface: 

H 2 I \' d~ T (' r 2 J d 
-8~r = 2 (2n)" J v; ,12 (n) + (2n)" ,\I L1G (~,1) - ~ • T_ v; · 

(26} 

(23) Using the solution of (3) for which we found for 
b.(n) and the normalization (7) we get from (24} 

From the normalization condition (7} follows that 
the integral on the right hand side of Eq. (23) is 
larger than unity as long as zp(n) ¢ const., and 
thus A < Ais· The isotropic model gives thus too 
large an estimate for the ratio D.C/Cn( T 0 r ). 

We must now turn our attention to the discrep­
ancy of this theoretical conclusion with experi­
mental data6- 8 according to which for nearly all 
known cases A > A is (apart from Cd, Zn, and 
Tl ). A possible cause of this discrepancy is that 
the interaction is in fact not a weak one and that 
there occurs experimentally a stronger singularity 
than a finite jump. t 

We consider now the behavior of the specific 
heat at low temperatures. Using the asymptotic 
behavior of G(x) as x- oo we get from (19) 

1/z 1/z Cs (T) = o~ L1mtn exp {- ~L1min (0)}, (24} 

where a is a dimensionless constant of order of 
magnitude unity. We can use (3) and (16) to re­
write Eq. (24) as follows: 

*ch =cosh. 
tNote added in proof (February 8, 1961). According to an 

estimate by A. A. Abrikosov and L. P. Gor'kov (private com­
mun~cation) a deviation of the specific heat from its normal 
behavior (a finite jump) can only be manifest in a very narrow 
temperature range near the transition point, which is up to the 
present inacessible experimentally. 

H;r _ 1 ( n: )2 2 T \ [ n2 I dcr 
-8n - 2 (2n)s Po r Ter Q (T) + (2n)" J L1G (~,1)- 3 T_ V"; · 

Near the absolute zero 

X= y2/3Q (0). 

(27) 

(28) 

(29) 

One sees easily from Eq. (8} that for any zp ( n) 
different from unity Q( 0) < 1 and we have thus 
from (29) 

X> Xis= 1.06. (30) 

The data on the measurements of the critical mag­
netic field which are given in Shoenberg' s mono­
graph9 are in contradiction to this result (except 
Sn where x = 1.07 ). The fact that for such aniso­
tropic superconductors as Zn and Al the quantity 
x turns out to be very nearly equal to unity seems 
to be especially surprising. We must note that in 
fact there are no measurements in the low-temper­
ature region and the values of x mentioned a mo­
ment ago are extrapolations, the correctness of 
which can, apparently, not be assumed to bees­
tablished. All the same, the reasons for the dis-
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crepancy between the theoretical conclusions and 
the experimental data are not clear to the present 
author. It is, apparently, necessary to elucidate 
first of all how an increase of the interaction con­
stant g would influence the results. An analysis 
of this problem will be the subject of a subsequent 
communication. 
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