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It is shown that the four-fermion interaction to any order will not yield masses for particles 
that have no bare mass. 

SEVERAL works have of late developed the point 
of view that the masses of particles result from 
their interactions with (or transformations into) 
other or similar particles (or fields ) .1- 3 The 
only example, however, of a definite prediction of 
a fermion mass is the two-component neutrino 
theory with an identically vanishing mass for any 
interaction. 4- 6 

One may use the analogy with the neutrino the­
ory to establish important restrictions on the kind 
of interaction which may lead to a finite particle 
mass. It turns out that a finite mass cannot be ob­
tained from a theory with several different types 
of fermions, all with vanishing bare mass, if one 
uses the electromagnetic interaction and a four­
fermion interaction of any kind (that is, S, V, T, 
A, or P, and no derivative interaction). 

If some of the particles of a several-fermion 
theory have a finite bare mass (or a mass ob­
tained from some other interaction), then those 
fermions whose bare mass vanishes can be given 
a finite mass by a four-fermion interaction in­
volving those with mass. This is possible, how­
ever, only by violating the Gell-Mann-Feynman 
postulate, 1 which will lead to a polarization in de­
cay differing from vI c. 

Let us prove this assertion. To do this we first 
give a somewhat different formulation of the usual 
Dirac equation for a free particle possessing mass. 

As is well known, a four-component wave func­
tion can be written in terms of two two-component 
spinors 

each of which (that is cp and x> separately trans­
forms by an irreducible representation of the proper 
Lorentz group. For vanishing mass the Dirac equa­
tion decomposes into two independent equations for 
cp and x. or in other words describes separately 
"right" and "left" particles with mass zero and 
velocity equal to that of light, each of which has a 
fixed spin component equal to either + Y2 or - % 
along the direction of motion. 

In this manner of speaking one may regard the 
mass as a coupling constant between the "right" 
and "left" particles, since in the Lagrangian it 
appears as a multiplicative factor in the expression 

Similarly, the mass enters on the right side (giv­
ing rise to inhomogeneity) of the equations for cp 
and )(, namely 

N'here 

L1,2 = ia I at ± ~ o"a I axk. 
k=1,2,3 

Thus, whereas in the case of vanishing mass 
we are dealing with independent "right" and "left" 
particles, a finite mass is a quantity which deter­
mines the probability for spontaneous transitions 
of a ''right'' into a ''left'' particle, and vice versa. 
This situation is reminiscent of the Pais-Piccioni 
scheme, in which the K0 and K0 can be freely 
transformed into each other, so that the vacuum 
contains particles which are the linear combina­
tions (superpositions) K~ and K~. In the same 
way particles with finite mass may be considered 
superpositions of right and left particles.* 

In order for an interaction to lead to a particle 
mass, this interaction must give rise to mutual 
transformations of right and left particles. In 
other words, it must be possible with this inter­
action to construct Feynman diagrams with a 
single incoming line corresponding, for instance, 
to cp, and a single outgoing line corresponding to 
x. Let us see whether it is possible to obtain such 
a result through the electromagnetic or four­
fermion interaction. 

*It should be emphasized that we are dealing with nght 
and left particles which are not each other's antiparticles. 
On the contrary, we are assuming that there exist right and 
left particles all of whose charges (i.e., all superselection­
rule quantum numbers) are the same, and such that their mu­
tual transformation is not forbidden. 
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We shall introduce the'electromagnetic inter­
action by using the principle of minimum interac­
tion, which means that we shall assume that the 
free Lagrangian contains only terms of the form 
cp* acp/at and cp*ok acp/at, and similar bilinear 
terms involving x* and X· Then by performing 
the replacements 

a .A a 
at ~ ze 4 + 7it ' 

we obtain only vertices in which the incoming and 
outgoing lines are of the same kind ( cp - cp, 
X - X); thus the electromagnetic interaction 
gives no contribution to the transformation cp -X· 

Turning now to the four-fermion interaction, 
we remark that from cp* and cp (as from x* and 
x) we can construct only a four-vector, whereas 
from the different spinors . cp * and x (or X* and 
cp ) we can construct a scalar and a tensor.* 
Therefore a scalar can be constructed of four two­
component quantities in only five ways: three sca­
lars are the products of pairs of four-vectors 
formed of four cp or four x or of two cp and two 
x; one scalar is the product of two scalars formed 
of two cp and two x; and finally one scalar is the 
product of two tensors (formed of two cp and 
two x>. 

The four two-component spinors refer to differ­
ent particles, but we shall not write out in detail 
the corresponding expressions. What is important 
is that in any of the versions the number of par­
ticles of each kind, that is right ( undotted function) 
or left (dotted function), can change only by an 
even number, namely 0 or 2. This is obviously 
true to any order, no matter how many vertices 
we deal with. It is therefore impossible to con­
nect any number of vertices so as to obtain a 
diagram in which the number of right particles 
changes by -1, while the number of left particles 
changes by + 1. This proves the assertion. We 
note that this remains true when one introduces 
scalar form -factors depending on the (invariant) 
square of the momentum transfer. 

We have dealt here with four-fermion expres­
sions of the form 1/J*l/J*l/Jl/J, where 1/J* and 1/J may 
refer to different kinds of right and left particles. 
This form corresponds to a vertex with two in­
coming particles and two outgoing ones; we shall 
call such a vertex a 2 : 2 vertex. 

In addition to such vertices we must consider 
also those corresponding to expressions of the 

*We are considering only the proper Lorentz group, so that 
we need not differentiate between a scalar and a pseudoscalar 
or between a vector and a pseudovector, etc. 

form 1/J*l/Jl/Jl/J with three incoming and one outgoing 
particles ( 3 : 1 vertices), and 1/J*l/J*l/J*l/J ( 1 : 3 ver­
tices). 

Since complex conjugation is equivalent· to 
transforming from left to right particles, in 3: 1 
and 1 : 3 vertices the number of left and right par­
ticles changes by an odd number, in contradistinc­
tion from the rule we obtained for 2:2 vertices. 

Consider a diagram with one incoming particle 
on the left and one outgoing one on the right, and 
any number of interior vertices. Any 1 : 3 vertex 
increases the total number of particles by two, 
while a 3 : 1 vertex decreases it by 2, and a 2 : 2 
vertex leaves it invariant. Thus a diagram with 
one incoming and one outgoing line may contain 
any number of 2:2 vertices, but it is necessary 
that n1:3 = n3:1• This means that the total number 
of 1: 3 and 3: 1 vertices, namely n1:3 + n3:1, is 
even. Although each of these vertices changes 
the total number of right and left particles by an 
odd number, the diagram as a whole again changes 
the number of right and left particles by an even 
number, and the assertion remains valid. 

In distinguishing between 1:3, 2:2, and 3: 1 
diagrams, we assume that we have decided be­
forehand as to what constitutes an "antiparticle" 
as opposed to a particle, and only then is a direc­
tion of propagation associated with each line of 
the diagram. 

According to a remark due to B. L. Ioffe, a 
scalar interaction between fermions and mesons 
will also give no fermion mass, and this result is 
independent of the fermion mass. Indeed, vertices 
corresponding to such an interaction involve the 
transformation of a right fermion into a left one, 
or vice versa, with the simultaneous creation or 
annihilation of the meson. In a diagram contain­
ing a single incoming and single outgoing fermion 
line, the number of mesons created is equal to the 
number of mesons destroyed; thus the total number 
of meson vertices is even, and it follows thence 
that the total change of right or left particles is 
also even. 

This theorem breaks down if a particular kind 
of meson has two different interactions ( scalar 
and vector) with the fermions. We remark that 
with nonconservation of parity one need not distin­
guish between scalar and pseudoscalar, or vector 
and pseudovector. 

The theorem also breaks down for three-meson 
vertices, in which one of the mesons is trans­
formed into two. 

If among our fermions there is at least one 
which has a bare mass m 0, then there exists a 
diagram involving this fermion in which there is 
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an incoming right particle ( t) and an outgoing 
left one ( t), as shown in Fig. 1a. The matrix 
element corresponding to this diagram is propor­
tional to m 0• By combining this diagram with two 
electromagnetic diagrams, we obtain a correction 
to the mass of the particle, and at the same time 
we see that b.m ...., m 0e2 (see Fig. 1b). 

By combining an m 0 diagram for one of the 
fermions with a four-fermion vertex, one can in 
principle obtain the transformation of a right par­
ticle into a left one for any pair of particles (with 
zero bare mass), so long as such a transforma­
tion is allowed by charge conservation. Then by 
perturbation theory the particle will end up with 
a mass J.l. ...., m 0gU, where m 0 is the bare mass of 
the other particle, g is the four-fermion coupling 
constant, and n is the number of four-fermion ver­
tices (see Fig. 2). Since g has the dimensions of 
m - 2, the form of this expression predetermines 
the power to which the cutoff momentum enters 
into J.l.. 
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FIG. 2 

Consider a given particle with wave function 
( cp, x). In order that this particle have a finite 
mass as !1 result of the four-fermion interaction 
and the existence of some other particle with bare 
mass m 0, the original particle must enter into the 

four-fermion interaction in two ways, namely 
through cp and through X. • This represents a vio­
lation of the Gell-Mann-Feynman principle, which 
states that all particles enter into weak interac­
tions through just a single two-component function. 
This violation will lead, obviously, to weak-decay 
production of such particles with longitudinal po­
larization different from v/c. 

R has been remarked by L. B. Okun' that the 
assertion of the present article can also be proven 
in the more .common language of four-component 
bispinors if one considers simultaneous y 5-trans­
formation of the bispinors of all particles in the 
Lagrangian. Any Lorentz invariant four-fermion 
interaction is automatically invariant under this 
transformation, even if any one of the fermions 
taken separately is not. 

I take this opportunity to express my gratitude 
to L. D. Landau for his repeated insistence that I 
use two-component quantities, as well as to B. L. 
Joffe, L. B. Okun', and I. Ya. Pomeranchuk for 
discussions. 
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