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An exact solution has been found for the equation that describes photoproduction of pions on 
pions at low energies. The condition for a unique solution is formulated. The solution is de­
termined by the high-energy singularities of the amplitude. It has a resonant character if 
resonance occurs in the scattering of pions on pions in a state with J = I = 1. 

1. INTRODUCTION 

THE photoproduction of pions on pions 

must be taken into account if photoproduction of 
pions on nucleons is studied with the aid of the 
Mandel'stam representation,1 just as scattering 

(1) 

of pions on pions must be taken into considera­
tion in an investigation of pion-nucleon scattering. 

In the analysis of pion-pion scattering we intro­
duce in the theory a new pion-pion interaction con­
stant. 2 Should a similar constant be introduced in 
the analysis of the photoproduction of pions on 
pions? Perturbation theory answers this question 
in the negative. In fact, whereas a four-pion ver­
tex with four internal nucleon lines diverges, so 
that it becomes necessary to introduce into the 
Lagrangian a corresponding counterterm and a 
pion-pion interaction constant (see, for example, 
reference 3), an analogous vertex with one photon 
and three pion external lines converges, so that 
there is no need for new counterterms and a new 
constant. Furthermore, such photon-three-pion 
counterterms cannot be introduced simply from 
considerations of covariance andrenormalizabil­
ity. Thus, from the point of view of perturbation 
theory, the photoproduction amplitude sh9uld be 
expressed in terms of the ''old'' constants ( say, 
the electromagnetic, pion-pion, and pion-nucleon 
interaction constants ) • 

If furthermore, after taking the electromag­
netic interaction once into account on inclusion of 
the photon, we consider only strong interactions 
and disregard the 1rKK interaction (which cannot 
be stronger than the electromagnetic interaction4 ) 

then any diagram of process (1) should contain a 
nucleon or nucleon-hyperon loop (Fig. 1). Thus, 
the process (1) is connected in an essential man-
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FIG. 1 

ner with baryons in intermediate states and should 
vanish in the limits of infinitely large baryon 
masses. 

It will be shown later on that these results of 
perturbation theory follow also from the theory 
of dispersion relations. 

The process (1) was analyzed by Gourdin and 
Martin, 5 who used the double dispersion relations. 
They obtained a homogeneous equation for the am­
plitudes of this process, and obtained its solution 
in the approximation of sharp pion resonance. 
This solution depends on an indeterminate constant 
and has a resonant character in the limit, when 
the width of the pion resonance (of finite height) 
vanishes. From the physical point of view it is 
clear, however, that if the pion scattering ampli­
tude vanishes everywhere except at one point, 
where it is finite, then the scattering process 
should not appear anywhere. 

We start from the usual (one-dimensional) 
dispersion relations in the observable region, as­
suming that it is valid without subtractions. In 
Sec. 3 we give physical considerations from which 
it follows that if the dispersion relations with one 
subtraction are valid for scattering (as in refer-
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ence 2), then the dispersion relations are valid 
without subtractions for photoproduction, by virtue 
of the gauge invariance. In order to obtain from 
the dispersion relations an inhomogeneous equa­
tion with a non-trivial solution, it is necessary 
to take into account the far singularities, primarily 
the singularity corresponding to the nucleon-anti­
nucleon pair in the intermediate state in the uni­
tarity condition.* 

In Sec. 4 we obtain in explicit form a solution 
of the equation derived from the dispersion rela­
tions. This solution is unique if the pion phase 
shift tends to zero at infinity. On the other hand, 
if the phase shift tends to 1r, then the solution is 
not unique. However, one of the solutions at in­
finity tends to the inhomogeneous term faster than 
all others. Only this solution has the property that 
the entire contribution of the pion scattering van­
ishes from it if the width of the pion resonance 
(of finite height) tends to zero. We choose pre­
cisely this solution as the physical one. The dia­
grams of the solution are constructed for two 
models of pion resonance, which differ in the be­
havior of the phase shift at infinity. 

2. KINEMATICS 

Let k and e 11 be the momentum and the vector 
of polarization of the photon, q1, a, and also q2, {3 

and q3, y, are the momenta and charge numbers 
of the initial and final pions respectively. The 
matrix element of the process (1) has the follow­
ing form5 

<l'Ut Is I ny> 

4 10 mnrsq';'q;q~e.~ -
= (2n) 0 (k + q1- q2- q3) V Ba~yF (s, s, t), 

4 q"qoqoko 
1 2 3 (2) 

where E is a completely antisymmetrical tensor, 
and F is a completely symmetrical function of the 
invariants 

s = (q2 +q3)2, s = (ql -q3)2, 

t = (ql-q2)2; s +s +t = 3ti2. (3) 

In the center-of-mass system (c.m.s.) we have 

<nniS/ny)=(2n)4o(k+ql-q2-qa) evv[qk] Ba,gJ(s, S,t), 
4 wkk (4)t 

s = (k + wk)2= 4w~, s = f-t2-2kwq-2kq cos 8, 

t = f-t 2 - 2kwq+2kq cos 8, (5) 

*A similar allowance for the far singularities (for 11 K scat­
tering with charge exchange) was made by A. A. Ansel'm and 
V. M. Shekhter and reported at the Conference on Dispersion 
Relations in Dubna (May 1960). 

t(q k]"' q X k. 

where JJ. is the pion mass, k = I k I, q = q3, Wk 
= -../k2 + JJ.2, cos e = k·q/kq, and 

co 

F (s, cos 8) = ~ fzt+ds) P~t+dcos 8). (6) 
1=0 

F_rom the unitarity condition it follows that at low 
energies 

(7) 

where oz is the pion-pion scattering phase shift in 
a state with angular momentum l and isotropic 
spin 1. The differential cross section is 

(8) 

3. DISPERSION RELATION 

We now postulate the rate of growth of the func­
tion F for fixed t and s - oo. It follows from (8) 
that for fixed t and s - oo we have 

(9) 

Were this equation to pertain to an elastic process, 
it would follow from it that, Im F behaves as the 
total cross section of this process for fixed t and 
at s- oo. There are theoretical grounds for as­
suming that the total cross section should decrease 
at infinity as 1/ln2 s. Consequently, Im F should 
decrease at the same rate in (9) for an elastic proc­
ess. Let us assume that this takes place also for 
the process considered here. 

If it is assumed in general that the differential 
cross section forward for photoproduction and 
scattering of pions at infinity have the same rate 
of growth, then the invariant amplitudes for photo­
production should decrease more rapidly than 
those for scattering, since gauge invariance calls 
for an energy factor to stand between the invariant 
amplitude and the matrix photoproduction element, 
a factor which is absent in the case of scattering. 
Furthermore, if the dispersion relations are valid 
with one subtraction for scattering, they are valid 
without subtractions for photoproduction. We thus 
assume that the one-dimensional dispersion rela­
tions for this process, which are rigorously proved 
in reference 6, are valid without subtractions: 

co 

F( t) _ __! ~ Im F (s',t) + ( -) s, -- , . s ~s. 
n s-s-te 

(10) 
4f'.' 

If we confine ourselves to the examination of the 
nearest singularities in this relation, i.e., if we 
consider in the unitarity condition only a two-pion 
intermediate state, then we obtain for the photo­
production amplitude a homogeneous equation 
which should have a trivial solution (the unique­
ness requirement is formulated in Sec. 4). Thus, 
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the process under consideration depends substan­
tially on the far singularities. 

Allowance for the next singularities, correspond­
ing to four, six, etc. pions in the intermediate state, 
introduces into relation (10) the photoproduction 
amplitudes of many pions. At the present time we 
cannot write down a system of equations for these 
amplitudes. It is clear, however, that since all 
these amplitudes have no pole singularities, such 
a system should be homogeneous and its solution 
trivial. 

The next singularity corresponds to the kaon­
antikaon pair ( KK). If we disregard weak inter­
actions, then the amplitude of the process y1r 

- KK also has no pole singularities. It is easy 
to write down for it a dispersion relation [without 
subtraction, like (10)], which has a trivial solution 
if the amplitude of the pion photoproduction van­
ishes. 

The next singularity, which introduces inhomo­
geneity into (10), corresponds to a nucleon-anti­
nucleon pair ( NN) in the intermediate state, 
since the dispersion relations for the amplitude 
of the process Y7T - NN have an inhomogeneous 
pole term. Once the inhomogeneity is introduced 
in the equations, we can neglect the amplitudes of 
photoproductions of four etc. pions in the low­
energy region under consideration. 

Thus, the 1m F term of (10) has two parts 

lm F = (lm F)"" + (lm F) NN' (11) 

where (1m F )7T7T is expressed in terms of the am­
plitudes of the processes Y1T - 1r1r and 1r1r - 1r1r 

(7), while (1m F) NN is expressed in terms of the 
ampl!_tudes of the processes y1r - NN and 1r1r 

-NN. 
The term ( Im F )7T7T in (10) contains, generally 

speaking, a region of unobservable angles at low 
energies. There is no unobservable region when 

t=-[12 /2, 

and in this case relation (10) has the form 

( 
q ) 1 co~ (lm F (s', cos 6 = q' I k')) 

F s, cos 6 = -k = - , '"' ds' 
ll s - s 

co 
__L~\ 

I J1 ~ 
4m2 

Jp.2 

(Im F (s', cos6 = q' I k')) -
NN ds' 

s' -s 

(12) 

(13) 

here m is the nucleon mass. It is obvious that in 
the integrals whose lower limit is 4m2 we can put 
cos (} = 1 and neglect s and s compared with s'. 

4. THE INTEGRAL EQUATION AND ITS SOLUTION 

At low energies in the observable region, it is 
sufficient to include in the expansion (6) the lower 
partial waves. Neglecting F and the higher waves, 
we have 

F(s, cos6) = fi(s) = f(s), (14) 

where f is the amplitude of the P wave. Putting 
v = q2/JJ.2 we obtain from (13) 

co 

f(v)=A+~( lmf(v')(, 1 . + , , 1 f-"/ )dv'. nj v-v-m v,v- 8 

0 (15) 

Here 

2 co~ (Im F (s', 1)) -
A=- NN ds' 

:n: s' ' (16) 
4m' 

(17) 

Equation (15) has crossing symmetry (under the 
substitution v - - v - %) and we can write for it 
an exact solution (see references 7 and 8). 

1) Assume that when v - oo 

b (v) __.. 0 (b(v)-+cv-", a> 0). (18) 

We put 
co 

il(z)=~\b(v)(-1 -+ + 1+,)dv. (19) 
:t .\ 'V- z 'V z /8 

0 

This function with crossing symmetry is holomor­
phic in the entire z plane with a cut from - oo to 
- % and from 0 to oo • Its limiting values on the 
cut from above ( +) and from below ( - ) are 

Ll±(v) = p(v) ± ib(v), (20) 

where 
co 

1 ~ ( 1 1 ) p (v) =- P b (x) -- + . + +"I dx. 
Jt X-V X 'V 8 

(21) 
0 

When z-oo 

Ll (z) -> 0. (22) 

Let us consider the function 
co 

'I' (z) =- e" (v) sin b (v) --· ...L dv. 1 ~ ( 1 1 ) 
ll v- z 1 v + z + 9/s 

(23) 
0 

It has the same symmetry, the same holomor­
phism region, and the same cuts as ~ ( z ) , and its 
jump on the cut is 

(24) 

Therefore the function >It( z) should coincide with 
e~<z>, apart from a polynomial. Since the function 
>It( z) - 0 and e~(z) - 1 as z - oo this polyno-
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mial is equal to unity: 

lf (z) = e"' (z)- 1. 

It follows from (23), (25), and (20) that 

f(v) =Aexp{p(v)+io(v)} 

(25) 

(26) 

is the solution of Eq. (15). This solution is unique, 
since the general solution of the corresponding 
homogeneous equation is of the form PeP+io, 
where P is a polynomial (which has crossing 
symmetry); it should tend to zero at infinity, i.e., 
p = 0. 

2) Assume now that as v - oo 

o(v)-->:rt, (o(v)->:rt-cv-"',a>O). (27) 

We put 
00 

~ (z) - z + "iJ• ( ~(-1__ 1 )dv (28) 
- :t .\ v + 9iis v- z v + z + 9/s · 

() 

This function has the same properties as the func­
tion in (19), but as z - oo 

~(z) --->Const-2ln(z + 9/Ia), 

e"' (z) ---> const (z + 9/Ia)-2· 

(29) 

(30) 

As in the preceding case, we can readily show that 
the solution of (15) will be 

(31) 

where 
00 

(v)-"~·IJsp\~(-1 __ 1 )dx 
p · - 1t ) X+ 9/w: X-V X+ V + 9ls ' (32) 

() 

(33) 

This solution, however, is not unique since it is 
possible to add to it the general solution of the 
homogeneous equation, which in this case is 

Cexp{p(v) +io(v)}, (34) 

where C is an arbitrary constant ( C cannot be a 
polynomial of first degree in view of the crossing 
symmetry requirement). 

Thus, all the solutions of Eq. (15) have in this 
case the form 

We shall regard as physical that solution of 
Eq. (15), which tends to the inhomogeneous term 
at infinity more rapidly than any solution of the 
corresponding homogeneous equation tends to 
zero. From (31) and (35)- (37) we obtain an ex­
pression for this solution 

f(v) =AA-1 [(v +9/16) 2-Ail eP+i5, (38) 

where A is given by formula (33) and 

A 1 = [v2 (A -I (v + 9/1a)2 eP+iS- 1 )lv=· (39) 

At high energies the contribution from the disper­
sion integral vanishes rapidly from this solution, 
and consequently, of all the solutions (35), it is the 
least sensitive to the details of the behavior of the 
phase shift o at infinity. Only this solution gives 
a physically true result when the width of the pion 
resonance contracts to zero. In fact, when 

0= {0, 
It, 

(40) 

we have 

f<I> (v) -A (v + "!Js)• 
- (v- vk) (v + vh + 9ls) ' 

(41) 

whereas in (38) 

f(v) =A. (42) 

Let us give an expression for the photoproduction 
amplitude for two models of pion resonance ( Vk 
and b are certain parameters ) 

jo, v<vk-b, v>vn+b 

I. o = (nl2b)(v + b- vh), vk- b < v < vk 

(nj2b) (vk + b- v), vk < v < "h + b 

(43) 

The expression (26) gives in this case 

f (v) = Aei8 (v)cp (v)' 

{I (v-vk)2 l(v-vlt)/2b/" +b-v !'''} 
cp (v) = (v +b- v1)(vlt + b- v) v ~b- "" 

· {v~- v- 9/s}. (44) 

J 
0, 

II. o = (n/2b) (v + b- vh), 

t rr, 
"< "" -b 
vlt-b<v<v~t+ b. (45) 
vh+ b < v 

f<I>(v) +Cexp{p(v) +io(v)}. (35) The expression (38) gives in this case 

They all tend at infinity to A as 1/ v2, since as 
v-oo 

f<I> (v) = A [ 1 + ~2 ( 1 - 9/8 v) + !4 + ... J , 
eP+iB = cr02 (1- 9j8v) + ~: + ... 

v v 

And the only unique solution for which 

C:x 0 = -Aa, 

tends to A as 1/v' at infinity. 

(36) 

(37) 

f (v) = AeiS (v)cp (v), 

cp (v) = [(vk- v) (vk + v + 9/ 8) + b2 /3] 

I e '"k + b _ v (·,+b-v~t)/2b 

xl{tvk+b-vl\vh-b-vl } 

, {V->--V-9/s}J. 

These phase shifts and solutions are shown in 
Figs. 2 and 3 for the resonance parameters (taken 
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from reference 9) Vk = 1.5 and b = 0.4. In both 
cases the amplitude of photoproduction has a reso­
nant character, and its resonance is shifted some­
what relative to the pion resonance. In the first 
model (43) the photoproduction resonance is much 
sharper. In the second model (45) the photopro­
duction amplitude vanishes near the energy of 
pion resonance. 

The author is grateful to G. Byalkovskii, A. 
Yurevich, P. S. Isaev, and M. I. Shirokov for use­
ful discussions. 
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