SOVIET PHYSICS JETP

VOLUME 13, NUMBER 2

AUGUST, 1961

DOUBLE DISPERSION RELATIONS FOR POTENTIAL SCATTERING

V. I. MAL’CHENKO
Dnepropetrovsk State University
Submitted to JETP editor July 16, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 546-548 (February, 1961)

We study the analytic properties of the scattering matrix T (k2 t) as a function of t for real
k%, where t is the square of the momentum transfer, and k? is the square of the momentum.

The potentials treated are of the form F (r) r-!

IN this article we study the analytic properties in
the complex t plane of the quantum mechanical
amplitude T (k?, t) for elastic potential scattering,
for real k. Here t is the square of the momen-
tum transfer, and k® is the square of the momen-
tum. In particular, for a potential of the form

V(r) =F(r)rie, a>0 (1)

we are able to prove the following assertion: the
scattering amplitude T (k?, t) can be extended
analytically into the complex t plane for all real
values of k%, and the existence, location, and
types of singularities are all determined by F (r).
Further, T (k% t) — 0 as t — « in any direction
other than along the positive real axis.

The restrictions on F (r) depend both on our
method of proof and on whether the scattering is
nonrelativistic or relativistic (determined by the
Klein-Gordon equation). In the nonrelativistic
case it is sufficient to choose F (r) such that the
Fourier transform V (k) of V(r) exists, and
such that if one writes

F(r) = \ e=rsf(s) ds

«
.0

(2)
then

N _ ¢ d

V (k) = S ekt V(r) dr = 4x S (?L% 3)
0

In the relativistic case, in addition to (3) we require

the existence of Vz(k), where

Vo) = Se""Vz(r)dr~ 4n§ (“2%2 , @)
i =\ dp\ arf@F(p—r). 5)

Henceforth the f(s) and f;(s) functions of Egs.
(2) — (5) shall be restricted by the additional condi-
tion that lim rF(r) = 0 in the nonrelativistic case
and lim F(r) = 0 in the relativistic case as r — 0.

e or,

We may remark, however, that the results we ob-
tain would seem to be valid-also for a wider class
of functions. In the-nonrelativistic case one may,
in addition, include F (r) functions whose trans-
forms are the 6 (s) function or its derivatives
6(0)(s). In the relativistic case the 6(D)(s) are
admissible.

As an illustration of our method of proof we
proceed with the case of relativistic scattering.
The configuration-space representation of the
scattering matrix T(k’, k) has been obtained
elsewhere.! The momentum space representation
is
T, (k', k) =T (k% t) = W (k' —k|)

— g\ T (K —k E)WT( k, — k)
b | WK — ) it G (ks o K
k#:z—-; (ks _kD GMGSW(“‘/_I‘IJ)
X,;_—’if—Ge(k ki, k) lﬁ:—’\v’(m—kp. (6)

Explicit expressions for Gy and G, can be ob-
tained by the Fredholm solution of the scattering
problem.? For instance, Gy is given by

Gy (k; ki, ky) = A—(-k—)- [W(] k, —k,|)
oo W(ki—ka|) Ka(ky, %) - Ka(ky, x,)
4\ K s k , K '
L3 ( n!1) S 2.(.’? 2) Kz‘(f1 Xl) 2 (X1, X,,) dxl,,..dx,,],
n=1 Ka (x,, ke) K (X, X1) K2 (xn, X, )
where

W(k,—ko|) =2VE +mV (k, — ko |) — V2 ([ k; — ky ),

X 1h|z x; |
Ky ki, x) = {dze-vaw (2) e W (),
ik|x; —z| .
K2 (xi’ kz) = S dz 4:‘ X —z] W (Z) elkzz’
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and A (k) is a certain function of k. The G, func-
tion has the same properties as G;, and we there-
fore refrain from writing it out.

We have now reduced our study of the analytic
properties of T (k2, t) to the study of Eqs. (6) and
(7). Proceeding with Klein,? we write

k' = k (cos (8/2), — sin (0/2), 0),
k, = k, (siny sin @, cos y sin @, cos @),

where 0 is the scattering angle, and make use of
(3) — (5). It can then be shown, for example, that
for potentials of the form

e=or,  re=er, ... rie—er 8

T (k?, t) can be analytically extended, for all real
k2, into the t-plane cut along the real axis from
402 to « with poles of different orders at t = o
and t = 402,

We now write down the usual dispersion rela-
tion for T (E,t) in the absence of bound states
(with E = k% + m?%):

T (E, b (E—m)J(IE—Eo) P

v Im T (E’, ¢
X \ dE [ (E"—m)(E" — Eo) (E' — E — ig)
: Im T, (E", 1)
T (E"+m)(E"+Ey) (E'+ E) }
. m—E E — Eg
"T'm__*'E;ReT(Eov )+ ;n—_—E)T(m, f). (9)

For potentials satisfying (8) this relation was
obtained! for —t < 4a2. But both sides of (9) are
analytic functions of t (for E; >m) for all t ex-
cept the poles and the cut mentioned above. Hence
(9) is valid for all t. Further, since the right side
of (9) can be extended analytically into the complex
E plane with cuts from +m to +w, this equation
establishes the analytic properties of T (E,t) for
complex E and complex t.

From these results we may now write the double
dispersion relation
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T (E, § = E=m(E—E)
) TR E—mE B ) =
m 32)
co

. dE (B D)
e e s (S) e

m 2%)?

m—E . E—E
_IT m—E, ReT(EO, t) -~ IIZ—'—T(:)T (m, t), (10)

where pq ,(E’, t’) are real functions describing
respectively, scattering of particles and anti-
particles.

Several results can be obtained from Eq. (10).
First, one can establish the analytic properties of
the partial wave amplitudes by using the formula

+1
A,(E) =5 \ Pi(cosO) T (E, t)d cosO,
—1
t = —2k*(1 — cos 0).

Further, by comparing the analytic properties
of Im T (E,t) with those that would have been ob-
tained for the imaginary part of the meson-nucleon
scattering amplitude if Lehmann’s* procedure had
been used, one finds (letting the nucleon mass ap-
proach infinity) that the radius of the meson-
nucleon interaction is p = ¢™! = 0.86 x 10713 cm.
We have obtained this result elsewhere® in a some-
what different way.
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