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We study the analytic properties of the scattering matrix T (k2, t) as a function of t for real 
k2, where t is the square of the momentum transfer, and k2 is the square of the momentum. 
The potentials treated are of the form F ( r) r-1 e-ar. 

J N this article we study the analytic properties in 
the complex t plane of the quantum mechanical 
amplitude T ( k2, t) for elastic potential scattering, 
for real k2• Here t is the square of the momen­
tum transfer, and k2 is the square of the momen­
tum. In particular, for a potential of the form 

V (r) = F (r) r-1e-ar, (1) 

we are able to prove the following assertion: the 
scattering amplitude T ( k2, t) can be extended 
analytically into the complex t plane for all real 
values of k2, and the existence, location, and 
types of singularities are all determined by F ( r). 
Further, T ( k2, t) - 0 as t - oo in any direction 
other than along the positive real axis. 

The restrictions on F { r ) depend both <?n our 
method of proof and on whether the scattering is 
nonrelativistic or relativistic (determined by the 
Klein-Gordon equation). In the nonrelativistic 
case it is sufficient to choose F { r) such that the 
Fourier transform V ( k) of V ( r ) exists, and 
such that if one writes 

then 

00 

F (r) c~ ~ e-rsf(s)ds 
_l) 

co 

- ~ ~ f (s) ds V (k) = eikr V(r) dr = 4:rt 
(a+ s)2 + k 2 • 

0 

(2) 

(3) 

In the relativistic case, in addition to (3) we require 
the existence of V2(k), where 

00 

V-2(k) _ \ ikrV2( )d _ 4 (" ft(s) ds 
- ~ e r r - :rt ) (2a + s)2 + k 2 ' 

(4) 
0 

s p 

fds) = ~ dp~ d-r f ('r)f(p- -r). (5) 
0 0 

Henceforth the f ( s ) and f1 ( s ) functions of Eqs. 
{2)- (5) shall be restricted by the additional condi­
tion that lim r F ( r) = 0 in the nonrelativistic case 
and lim F ( r) = 0 in the relativistic case as r- 0. 

We may remark, however, that the results we ob­
tain would seem to be valid also for a wider class 
of functions. In the-nonrelativistic case one may, 
in addition, include F ( r) functions whose trans­
forms are the o ( s ) function or its derivatives 
o<n> ( s). In the relativistic case the o<n> ( s ) are 
admissible. 

As an illustration of our method of proof we 
proceed with the case of relativistic scattering. 
The configuration -space representation of the 
scattering matrix T 1 { k', k) has been obtained 
elsewhere. 1 The momentum space representation 
is 

T 1 (k', k) = T (k2 , t) = W (I k' - k J) 

- J:_ \ W (I k' - k1 I) _ dkr W(; k, - k I) 
8n3 ~ ki - k2 - ie 

Explicit expressions for G1 and G2 can be ob­
tained by the Fredholm solution of the scattering 
problem.2 For instance, G,. is given by 

where 
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and ~ (k) is a certain function of k. The G2 func­
tion has the same properties as G1, and we there­
fore refrain from writing it out. 

We have now reduced our study of the analytic 
properties of T (k2, t) to the study of Eqs. (6) and 
(7). Proceeding with Klein, 3 we write 

k' = k (cos (6/2), -sin (8/2), 0), 

k1 = k1 (siny sin <p, cos y sin <p, cos <p), 

where (} is the scattering angle, and make use of 
(3)- (5). It can then be shown, for example, that 
for potentials of the form 

e-a.r' re-ar' . . . ' rne-a.r (8) 

T ( k2, t) can be analytically extended, for all real 
k2, into the t-plane cut along the real axis from 
4a2 to oo with poles of different orders at t = a 2 

and t = 4a2• 

We now write down the usual dispersion rela­
tion for T ( E, t) in the absence of bound states 
(with E = k2 + m 2 ): 

T (E, t) = (E-m) ~E- Eo) p 

00 

X \' dE' [ Im T (E', I) 
J (E'- m) (E' --Eo) (E'- E- ie) 
m 

Im Ta (£',I) J 
+ (E' + m) (E' + E0) (E' + E) 

m-E E- Eo + --E- ReT(E0 , t) + --E-T (m, t). 
m- o m- o 

(9) 

For potentials satisfying (8) this relation was 
obtained1 for - t < 4a2• But both sides of (9) are 
analytic functions of t (for E0 > m) for all t ex­
cept the poles and the cut mentioned above. Hence 
(9) is valid for all t. Further, since the right side 
of (9) can be extended analytically into the complex 
E plane with cuts from ±m to ± oo, this equation 
establishes the analytic properties of T ( E, t) for 
complex E and complex t. 

From these results we may now write the double 
dispersion relation 

T (E, t) = (E-m)~E-E0) 

00 

X [ p ~ dE' 
(E' -- E 0) (E' --Ill)(£'-· E) 

m 

CO CG 

+ ( dE' \ r'z IE', I') dt'] 
~ (£'+£0)(£'+m)(E'+E) .) ~~ _ 
Ill (2:x:)2 

m-E E- £ 0 + -- ReT(Eo, t) + --T (m, t), m-£0 m- Eo 

where p1, 2( E', t') are real functions describing 
respectively, scattering of particles and anti­
particles. 

(10) 

Several results can be obtained from Eq. (10). 
First, one can establish the analytic properties of 
the partial wave amplitudes by using the formula 

-+--1 

A 1 (E)=+ ~ P1 (cos 0) T (E, t)cl cos 0, 
-1 

t = -- 2k2 (I - cos 0). 

Further, by comparing the analytic properties 
of hn T ( E, t) with those that would have been ob­
tained for the imaginary part of the meson-nucleon 
scattering amplitude if Lehmann' s4 procedure had 
been used, one finds (letting the nucleon mass ap­
proach infinity) that the radius of the meson­
nucleon interaction is p = a-1 = 0.86 x 10-13 em. 
We have obtained this result elsewhere5 in a some­
what different way. 
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