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A theory based on the Fermi pseudopotential method is developed for the dissociation of 
diatomic molecules. It is assumed that the neutron energy is of the order of the dissocia
tion energy, and that during disintegration the molecule remains in the ground electron 
state. Under these assumptions, simple final formulas can be obtained for the cross 
sections of the processes. 

1. INTRODUCTION 

THE collision of a neutron with a chemically 
bound nucleus can be accompanied by transfer to 
it of momentum that is sufficient for breaking the 
bond, i.e., for dissociation of the molecule. This 
process which has not been investigated before, 
is of undoubted interest in radiation chemistry and 
biology, and also for the theory of slowing down of 
neutrons. Moreover, calculations of the dissocia
tion probability of molecules by neutrons are nec
essary in connection with the development now 
being car.ried on of the method proposed by Gol'
danskii of molecular neutronoscopy, 1 which has as 
its purpose the study of the different characteris
tics of molecules by recording neutrons scattered 
by them. 

We shall assume that the neutrons have an en
ergy E of the order of the molecular dissociation 
energy, i.e., E,.,.. 10 ev. Such energies correspond 
to a wavelength An,.,.. 10-9 em. This means that the 
relations An » A, a » A hold among An, the range 
of nuclear forces A,.,.. 10-13 em, and the character
istic molecular dimension, by which one should 
mean the amplitude of vibrations of nuclei in the 
molecule, a,.,.. 10-11 em. These relations make it 
possible to use the method of the Fermi pseudo
potential in the case under discussion. 2 

In other words, by introducing the interaction V 
between neutrons and the nuclei of a molecule of 
type 

(1) 

(here 1-Li = mim/ ( mi + m) is the reduced mass of 
the neutron ( m ) and the i -th nucleus in the mole
cule (mi), Ai=ai+bi(1•s) istheamplitudeof 

scattering of the neutron (spin s ) by the free nu
cleus ( spin 1), 1 • s is the eigenvalue of the oper
ator t • s ), we can compute the dissociation cross 
section da in the first Born approximation rela
tive to V, according to the usual formulas of per
turbation theory, for the probability of transition 
from the states of the discrete spectrum to the 
continuous: 

Here k, k' are the wave numbers of the neutron 
before and after collision, K1 ••• Kn are the wave 
vectors of particles which appear as products of 
the dissociation of the molecule, and do is the 
element of solid angle in which the neutron is 
scattered, 

ll is the reduced mass of neutron and molecule; 

(2) 

lf!o is the wave function of the initial state of the 
molecule, ·l{!K is the wave function of the final state 
of the molecule which corresponds to the process 
of its decay of a definite type (continuous spec
trum ) ; the symbol dr denotes integration over 
all molecular coordinates; in (2), the averaging is 
carried out over all the energetically degenerate 
states. 

For the neutron energies of interest to us, the 
formula (2) immediately admits a certain simpli
fication, which is connected with the fact that in 
such cases the motion of the nuclei both in the 
initial and in the final state can be regarded as 
slow in comparison with electronic motion. There
fore, for the functions ¢0, lf!K, the adiabatic ap
proximation is valid, i.e., one can represent them 

360 



THEORY OF MOLECULAR DISSOCIATION INDUCED BY NEUTRONS 361 

in the form of a product of electron wave functions 
and wave functions describing the motion of nuclei 
in a certain potential field which depends on their 
mutual distance. 

Inasmuch as the operator V acts only on the 
coordinates of the nuclei, then, in accord with (2), 
in the adiabatic approximation, the dissociation 
cross section of the molecule, which is accompa
nied by a change in its electron state, will gener
ally be equal to zero. Thus, it is permissible to 
limit ourselves to an investigation of dissociation 
processes for which the electron state of the mole
cule does not change, i.e., generally to exclude 
from consideration the electronic functions, con
sidering 1/Jo and ¢K in (2) as the wave functions of 
the relative motion of the nuclei corresponding to 
the main electron term. Nevertheless, even under 
these simplifying assumptions, the functions lfJK in 
the general case of monatomic molecules possess 
a very complicated character. Therefore, we shall 
initially limit ourselves to the study of dissociation 
of diatomic molecules for which the functions lfJK 
have a comparatively simple form. 

2. GENERAL FORMULAS FOR THE DISSOCIA
TION CROSS SECTIONS OF DIATOMIC MOLE
CULES 

For simplicity we shall assume that the elec
tron state of the molecules is 1l:. Then the Ham
iltonian of the relative motion of the nuclei of the 
molecule is identical in the adiabatic approximation 
with the Hamiltonian of the relative motion of two 
particles whose interaction is centrally symmetric; 
consequently, the functions ¢K in the given case 
are identical with the functions 1/Ji{ defined in refer
ence 3, Sec. 113, whose asymptote for r-oo 
( r = r 1 - r 2 ) is itself the superposition of a plane 
wave and a converging spherical wave: 

'IJ~ = 4_!__ ~ / (2l + 1) e-iBt Xxt (r) Pt (~), (3) 
nxr ...::J xr 

1=0 

where XKl are the wave functions of the equation 

iFXxt + (' 2 _ 2ftmU _l (l + 1)) X = 0 
dr" X }i2 r• ><l ' 

(4) 

U is the molecular potential and IJ.m the reduced 
mass of the molecule. The functions XKZ are regu
lar for r = 0 and have the asymptote 

X,_1 ~ }/2 I 1t sin (xr- nl I 2 + 61) for r-->- :JO. 

The initial state of the molecule, which has a 
vibration number n and rotational number K can 
be determined in the following way: 

where ~ = (r-r0)/a, r 0 is the point of minimum U, 
a = ..j 2li/ IJ.m w is the amplitude of the vibrations of 
the nuclei in the molecule, Hn ( ~ ) are Hermite 
functions, MK is the projection of the moment of 
inertia of the molecule K on the axis of the mole
cule, 8 and cp are angles which define the orienta
tion of the molecule in the center-of-mass system 
( c.m.s.) of the neutron-molecule, to which all our 
discussions refer. Equation {2) in the case under 
discussion is rewritten in the following form: 

k' 1 K 
drs = -k ------=~,- "" I W MK J2 dY. do, 2K+1 ...::J 

(6) 
MK=-K 

where 
ft \ i (k-k') rn -• 

WMK= Znn•je '!JoV'ilx drndr, 

V = 21tn2 (~ 6 (rn- r1) + ~ 6 (rn -- r2)). (7) 
ftl fl-2 

In {6) the averaging is carried out over orientations 
of the spins of the nuclei and the neutron which are 
assumed to be distributed randomly. 

We note that the wave numbers of the neutron k, 
k' and the wave number of the molecule K are con
nected by a relation which follows from the law of 
conservation of energy: 

k2 /2~- k'2 /2ft = DnK / Ti2 + X 2 /2rt; {8) 

DnK is the dissociation energy 

DnK = Um-(n+ ~)Tiro -K(K +I)n2 j2~mr~, 

Um =- U (ro)· 
One can transform Eq. (6) in such a way that 

only the characteristics of a finite state of the 
system are contained in it - the scattering angle 
of the neutron 8 and the wave number of the mole
cule in the final state K (see Appendix 1) : 

__ co l+K 

donK = y ~ ~ ! I~ (21 + 1) ~ (Cfo°Ko) 2FtL J dxdo, 
l=o L=ll-KI 

(9) 

where 

00 

J g = ~ + e-~'H n (~) Xxt (r) 'ilL+ ,1, (gr) dr, 
0 

g=g = m2.1 Jk-k'J, 
1,2 m1 + m. 

(10) 

Chko are the Clebsch-Gordan coefficients. 
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The averaging in (9) is carried out over the di
rections of spins of the nuclei and of the neutron. 
If the nuclei in the molecule are different (see ref
erence 3, Sec. 123), then 

i1,2 are the nuclear spins. Now if the nuclei are 
identical, then, as is easy to show, 

At2 = a2 + f i (i +I) b2 , 

A1 A2=a2+-fb2 [2i(i +I)-/(/ +I)], 

I is the total spin of the system of two nuclei. 

3. DISSOCIATION CROSS SECTION UNDER 
QUASICLASSICAL CONDITIONS 

For neutron energies of interest to us, its wave
length (A.n"' 10-9 em) is much less than the di
mensions of the molecule. Therefore, a quasi
classical approximation is generally valid for the 
functions XKl• ¢L+%: 

( 2 x )'/• . (f ~ n ) 'Xxz = ""it x sm J xdr + T , 
. r, 

~2 _ 2 _ 211m U _ l (l + 1) 
X -X Ji,2 r2 ' (11) 

'P = (2_ !!. )'\in ( f gdr + ~ ') g2 = g2- L (L + 1) 
L+ •;, n g .\ 4 ' r2 ' 

~ n~ 

where r 1 and r 2 are the turning points for the 
functions ;{2 and g2. Using (11) and (12), we can 
calculate Jg (10) by the method of steepest de
scents. We rewrite Jg in the form 

CXl 

tf = ~b (r) e5 <r>dr, 
0 

where 

b (r) = 2_ ( ::!)'I•J:_, 
n , xg r 

r r 

s = - (r a-; ro)• + i ( ~ xdr - ~ g dr) . 
r1 rz 

S ( r) is a quantity of large magnitude which has a 
saddle point defined by the equation 

- 2 (rn- ro)/a2 + i (x -g)= 0. (13) 

In the general case, calculation of Jg by the 
method of steepest descents leads to formulas that 
are difficult to handle. It is easy to note, however, 
that in the region of values of K and e where the 
cross section da is largest, the expressions for 
rn and Jg are greatly simplified. We shall carry 
out these simplifications, assuming that the mole
cule is found in the ground state (i.e., n = 0, 
K = 0 ) . We note that rn is close to the point of 

minimum potential of U, r 0• Then, as follows di
rectly from Eq. (13), we obtain the following ex
pression for rn: 

rn- 'o =iT], 

rt =j-a2 (x (r0)-g (r0)) =~a2 CV x-,''"2 --,l'"'2!----:r5-V g2-f2/r~), 

x' 2 = x 2 - 2p.m1i-2 U (r0) =X2 +2!lm1i-2 U m· (14) 

As is easy to show, Eq. (14) is valid under the con
dition 11/r0 « 1 [where 11 is determined in (14)]. 
Inasmuch as 

a2 = ll2n2f!lmU"(r0)-1i T0 /V !lmUm- f 0jx', 

then the condition 11/r0 « 1 is equivalent to the in
equality (K'-g)/K' «!.Then (14)canberewritten 
in the form 

a2 x'2-g2 a2 x'-g 
yt:=::::::- ::::::::...,- , l 0 =gr0 • (15) 

4 Vg2 -12;rg 2 V1-l2 !t~ 

Simplifying the quantities S (rn), S"(rn), b (rn) 
in similar fashion, and assuming that (K'-g)/K' 
« ..j 1 - z2 /l~ , we get 

J = _1_ ~-.I x 1 exp [- p2 l cos T, 
g y'n ro V x' V 1 -l2fl~ 2 (1- 1 2 /1~) .• 

r0 fo 

't = ~ xdr - ~ gdr. (16) 

r, 'z 
Upon substituting Jg in the series (9), we note 

that the interference terms, which contain the prod
uct of rapidly oscillating factors cos T ( g1 ) cos T ( g2 ), 

vanish in the summation, i.e., the dissociation cross 
section is composed additively of the cross sections 
corresponding to the collision of the neutron with 
the first ( daW) or second nucleus ( da(2)). * There
fore, it suffices to investigate, for example, the 
cross section da<1>, which is determined by the 
formula 

.. ;-n k' 1 2 1 ( 11 \ 2 ~l CXl 2 ] dcr<1>= V TTaA1~ j4"") .~ (2! +I) Jg, dxdo. (17) 
1 1=0 

Substituting (16) therein, and replacing the summa
tion over l by an integration, and cos2 T' by its 
mean value %, we get 

dcr =~~a_!, fl2 Ei(- p2) xdxdo, (18) 
2 V2n k x fli 

Equation (18) is evidently applicable under the con
dition that the region of large values of l for which 
(K' -g)/K' "'..j 1-l/l~ does not make an important 
contribution in the integration over l. Obviously, 
for this to happen it is necessary that for ( K'- g )/K 

*If the nuclei in the molecule are identical, then g1 = ~· so 
that cos2 't(g) enters into the interference terms. Nevertheless, 
the interference series };(-li(2l + l)J~/g2 , as is easy to see, is 
equal to zero in this case in view of its sign alternation. 
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"" ..j 1 -l2llij the inequality p2 I ( 1 -12 ll~) > 1 be sat
isfied, which is possible only when a2K' 2 » 1. In 
Eq. (18), consequently, both large values of p2, 

consistent with the condition 17lr0 "" (K' -g)IK' 
« (1 -1211~) 112 and small values of p2, consistent 
with the condition a2K' 2 » 1 can enter. For p2 > 1, 
Eq. (18) has the asymptotic form 

1 k' (!1 ) 2 - 1 e-P' da = , 1 _ -k a - A 21 ----; - 2 xdxdo, 
2 r 2n !11 x P 

while for p2 < 1 

1 k' ( )2- 1 do = , 1- -k a _!:.._ A~ ---;-In (r j p2) xdxda 
2 r 2n !11 x 

( 'Y is Euler's constant). 
Equations (18) and (20) are inapplicable for 

p- 0. Nevertheless, the difference of (20) for 
p- 0 from the correct equation, in which 

(19) 

(20) 

In (ylp2 ) must approach some finite value,* pos
sesses only a logarithmic character; consequently, 
Eq. (18), having been integrated over e and K, 

must yield the correct total cross section. Actually, 
making use of the well-known integral 

00 

~ Ei(- p2) dp = 2V~ 
-00 

we find that the energy spectrum of the scattered 
neutrons has the form 

d (!} _ A2 !111m 2k' dk' 
a - :rt r-2 --v-' 

!lr 
i.e., the total cross section a is 

A2 !111m E-D 
(J = :rt 1-2 -£-. 

!lr 

(21) 

(22) 

In particular, if the neutron collides with a proton 
in a heavy molecule, then /h = ml2, 1-L = 1-Lm = m 
and, consequently, 1-L/-Lm Ill~ = 4, i.e., 

a= cr0 (£-D)/£, (23) 

where a0 = 47T A~ is the cross section of scattering 
of the neutron by a free proton. In accord with (23), 
a at E » D, as was to have been expected, is iden
tical with a0• We now consider the angular distri
bution of the scattered neutrons from the basis of 
Eqs. (18) and (19). The maximum of da is evi
dently obtained for the angle e = e0 for which 
p = 0, i.e., K' =g. We assume that ak' » 1. Then, 
as is easy to see, the angle e0 is determined from 
the relation 

x' = V 11m (k2 - k'2) = gi 
f1 

= ____!!12_ v k2 --L k' 2 - 2kk' cos 6 
1111+ tnz 1 ' 

*As can be shown, as p -+ 0, ln (y/ p~ must be replaced by a 
finite quantity of the order of ln (ak'). 

with accuracy up to a quantity of order 1la2k' 2, 

i.e., 

cos 60 = [(v +I) p'2 - (v- 1) p2 ]!2pp', 

p = kli, p' = k'li, v = m1 (m1 + m2 + m)/mm2 • 

(24) 
It can be shown that e0 has the meaning of the 
angle at which the neutron will be scattered by a 
free nucleus initially at rest with mass m, in the 
set of coordinates which we have used, i.e., one 
connected with the center of mass of the neutron
molecule system. It is very easy to establish this 
by the example of the collision of a neutron with a 
proton in a heavy molecule, i.e., for m2 » m 1 = m. 
Then v R:: 1 and, in accord with (24), cos e0 = p' lp 
in correspondence with the given determination of 
e 0 (the set of coordinates in this case is identical 
with the laboratory set). 

We shall assume that the angle e is close to e0, 

i.e., 8 = 80 + J, J « 80• Then (for v = 1) we have, 
in first approximation in J, p = JIJ0, J 0 = .../21 ak' 
« 1. In this case Eq. (18) is simplified: 

da= cr_<>__ (L)2Ei(- {t2 )_i_dp'dit. 
Y 2n P {}~ Po 

(25) 

It is important to emphasize that in accord with 
(25) the cross section for the neutron scattering 
accompanied by dissociation of the molecule does 
not depend on the detailed form of the molecular 
potential, but only on the frequency of vibration of 
the nuclei in the molecule, w. Moreover, inas
much as for J > J 0, Ei (- p2 ) is proportional to 
exp (- J 2 IJ~), then one can show that all the scat
tered neutrons with final momentum p' are con
tained in the small range of angles 

The angle J 0 is in order of magnitude the differ
ence of the scattering angles of the neutron by a 
free proton initially at rest and by a free proton 
possessing a momentum Po before the collision. 
This means that the dissociation process of the 
molecules by the neutrons can be described in 
general terms by means of a very simple model, 
in which the chemically associated nuclei are con
sidered as free but possessing the same scatter 
of momenta as nuclei in the molecule.* 

We now note that for scattering of the neutron 
not by a proton but by a heavy nucleus, v » 1, 
i.e., in accord with (24), cos 80 "" - vDIE and, 
consequently, the region of the maximum of the 
angular distribution e "" 80 in this case, with neu-

*This model of the dissociation process, which is undoubtedly 
valid even in the case of the collision of a neutron with a poly
atomic molecule, was pointed out to us by V. I. Gol'danskiT. 
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tron energies on the order of the dissociation en
ergy D, is generally not achieved. Therefore the 
dissociation total cross section, which corresponds 
to collision with this nucleus, should be exponen
tially small. 

In conclusion, attention should be called to the 
fact that all the results obtained here, which are 
introduced under the assumption that K = 0, are 
valid also for K ;I! 0, if only K is not too large 
( K "' 1). Actually, the summation in the series 
(9) is carried out over a large number of terms 
corresponding essentially to the largest values of 
l, but for l » 1 and K "' 1, the difference between 
L and l can be neglected, i.e., daK ~ da0• 

4. THE DISSOCIATION CROSS SECTION CLOSE 
TO THRESHOLD 

If the wave number K is very small, so that 
Kr0 < 1, then the quasiclassical approximation (11) 
for the function XKl is not applicable over the 
whole region of variation of r. This fact, which 
holds for energies of the neutron close to the dis
sociation D, requires special consideration, which 
will be given below. 

For low energies of the scattering molecule 
li2K2/2J1m• the dissociation cross section should 
depend essentially on whether the molecule has a 
discrete level E close to zero. We shall first as
sume that this level is sufficiently deep that E - D 
« E. In this case, one can investigate the behavior 
of the functions XKl by a method similar to that 
used in the investigation of slow collisions (see 
referency 3, Sec. 108), i.e., in the region r"' r 0, 

(where K2 « - 2Jlm U/li2 and which gives the prin
cipal contribution to the integrals Jg1 2 ) XKl is 
represented in the form XKl = Cz(K) xi; xz is the 
solution of the equation 

d"x 1 _ ( 2fLm U + I (l + 1) 'J = 0 
dr• \ n• r• . Xt ' 

for which the quasiclassical approximation is valid. 
The coefficient Cz(K) is chosen under the condi
tion that, for r - oo, the correct transition is ob
tained to the asymptote 

Xxt ~ J!r2/rc sin (xr - rcl/2 + 61). 

Thus we find that Cz "' Kl+t (see reference 3, 
Sec. 108), i.e., in the series (9), only terms can 
be left corresponding to l = 0: 

The coefficient C0(K) entering into Jg1, 2 is essen
tially independent of the form of the potential U, in 
particular, independent of its behavior at infinity. 

As shown in Appendix 2, if U "' U0e -ar for 
r-oo, then 

% 2ct •;, • /~ - , .. 
Xo = -- (-=-) sm I x 0 dr + -4 ), 

(l COS q % \ 1 
o r, 

where 
00 

q = ~ xodr, 
r, 

(27) 

(it is assumed that U depends on r through the 
variable ar ). Substituting (27) in the integrals 
Jg1 2, and finding them as before by the method 
of steepest descents, we obtain the threshold for
mula for the dissociation cross section of a heavy 
hydrogen-bearing molecule in the ground state 
(n = K = 0 ), which is valid for .J 2J1m (E-D) /tia 
« 1: 

1 a cos2,; k'x2 
do = , 1 - o0 - 2 - --2- k4 dxdo , 

r 2n 'o a. cos q 
(28) 

where 
r, 

't' = ~ x0dr -- gr0 • 

r, 

The total dissociation cross section corresponding 
to (28) is given by the formula 

0 = ..!._ (~)·;, 0 ___!!:.____ (£ - D)2 cos"t • 
2 2 ° crr2 D cos2q 

0 

(29) 

We note that the quadratic dependence of the cross 
section close to the threshold D on the excess en
ergy E - D is the general property of reactions 
accompanied by the production of three slow par
ticles the interaction among which bears a short
range character4 (in our case these are the neu
tron and the two atoms which are produced upon 
decay of the molecule). 

Equation (29) is clearly found to be inapplicable 
if q is close to 1r (n + % ), with n an integer. But 
the equality 

00 

q=id l1 -2flmUdr=rc(n+i) 
r, 

is identical with the quasiclassical condition for 
the existence of a discrete level very close to 
zero (see reference 3, Sec. 48). Thus the inap
plicability of (29) is connected with the fact that 
in this case (in the decay of the molecule) reso
nance phenomena take place which arise from the 
fact that the dissociating molecule decays into a 
state which, even though it refers to the region of 
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continuous spectra, is quasi-stationary because 
of its nearness to the level E. We limit ourselves 
to the study of these phenomena for a special 
choice of potential 

U = U0 [exp {- 2ct (r- r0)}- 2 exp {- ct (r- r0)}] 

(the Morse potential). The function x0, having 
the correct asymptote as r _.... oo and r _.... 0 can 
be determined now by the formula 

')., = V2r-mVo!ctn, f1 = ix/cc, 6 = 2A exp {- ct (r- r0)}, 
(30) 

WA.,J.L is the Whittaker function. In the region 
r ,..., r 0, (30) is simplified 

Xo =X [ cos2 (rtf-) + n2 :: r•;, v~ sin (~ Xo dr + ~ ) , 
o r, 

00 

ltA = ~X'adr = q. (31) 
r, 

For cos (7TII.) » 7TK/Ot., (31) is identical with (29). 
In accord with (31), the dissociation cross section 
corresponding to the same assumptions as in the 
derivation of (29) has the form 

dcr = _1_ cr _!1_ cos2 't' k'x• dxdo. (32) 
y 2n ° ,~ a cos2 q + :n:2x2 ;a• k' 

If cos q = 0 (such an assumption corresponds, as 
is easy to see, to the condition E-D» E), then 
in accord with (32) the total cross section is 

1 aa E-D 2 
a=~~- Oo~ -D-cos T, 

r 2:n: 'okm 

Thus in this case the cross section increases lin
early with the energy of the neutron E. As was 
pointed out to us by A. I. Baz', such a growth of 
the threshold cross section with energy is a gen
eral law for processes in which two slow particles 
arise in the collision of two particles, one of which 
slow particles (in our case the dissociating mole
cule) is in a quasi-stationary state. 

We take this opportunity to thank V. I. Gol'dan
~kii who suggested the theme of this research, and 
also A. I. Baz', A. S. Kompaneets, and F. L. Sha
piro for discussion of the results and a number of 
useful hints. 

APPENDIX 1 

Integrating in (7) over the coordinate of the neu
tron rn, we have 

WMK=Atl:_Jt +A2J::..h, 
[11 fl• 

J 1,2 = (' exp {± ig12r} '¢0'1';;-• dr, g1 • = mm+2' 1m (k- k'). 
~ • •• 1 • (1a) 

We choose the z axis so that its direction in 
the set of coordinates which we have used for the 
neutron-molecule coincides with the fixed direction 
of the vector g, i.e., g1 or g2• The direction r 
in the set of coordinates specialized in this fashion 
is defined by the angles 8, cp and the direction K 

by the angles y, 0. The angle between I( and r is 
denoted by 8'. The elements of volume in r and I( 

space will be, respectively, 

dr = r 2 dr sin !ld!l dqJ, dY. = x2 dx do". 

The Legendre polynomials entering into (3), 
Pz( cos 8' ), can be transformed by means of the 
well-known theorem for the superposition of 
spherical functions (see reference 3, Sec. 113). 

In the calculation of the integrals J 1 2, one can 
* ' use the fact that in the products Pz (cos 8' ) x 

YKMK( 8, cp) only those terms make a non-vanish-

ing contribution which contain the product 
YiMK( 8, cp) YKMK( 8, cp ), which with the aid of 

well-known formulas of the vector superposition 
of moments (see reference 2, p. 614) can be 
written in the form 

I+K 'I 
y* y = (-l)MK "" [(21 + 1) (2K + 1) J • 

IMK KMK "'-J 4:n: (2L + 1) 
L=-(1-K) 

X Cfo°KoC~MK KMK YLo(6), (2a) 
Lo Lo CzoKo• Cz-MKKo are Clebsch-Gordan coefficients. 

Substituting (2a) in J 1, and making use of the well
known formula 

we get 

Jt = (2K+1)'1•_1_2](2 / + l) ;s1 (- .)1 [(1-~K)!J'/, 
2 2xg t e t U+MK)! 

I+K 
"" CLO CLO . LJ "'-J IOKO 1-MK KMK l g,, (3a) 

L=II-KI 

where 
co 

J g, = ~ + e-~· H, m Xxl (r) '~'L+'I• (gr) dr. 
0 

The integral Jg2• which is transformed in similar 
fashion, differs from Jg1 only in that the sum in it 

,, CLO CLO ·LJ 
"'-J IOKO 1--MK KMK l g, 

is replaced by 

"" cLo CLO ·-L J 
_.:::J loKo 1-MKKM'K l g,· 

Making use in Eq. (6) of the expression (3a) for 
Jg1 which is similar to the expression for Jg2, 
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and the well-known property of the orthogonality 
of the Clebsch-Gordan coefficients, we get Eq. (9) 
shown in the text. 

APPENDIX 2 

To find the correct form of the function x0, 

which is determined by the equation 

d2Xoldx2 + f (x)x 0 = 0, f (x) =- 2!LmU/h2 , x = ar 

in the region r""' r 0, we make use of the method 
of standard equations. 5 Let f ( x) - de -x as 
x- co. We choose as a standard equation 

d2rplds2 + de- 5 rp = 0, 

i.e., 

ff! = Zo (YJ)' YJ = 2d'i, e-s/2. 

According to the general formula we have 

Xo = (de-sff (x))'I•Zo (YJ), 

where the variable s is connected with x by the 
expression 

00 co 

11 = ~ d'f,e-st2 ds = 2d'f,e-s/2 = ~ {','• dx, 
X 

i.e., s- x as x- co. If Z 0( T/) is chosen in the 
form 

00 

I '; 
1']0 = )f 'dx, 

and we use the asymptote H~1>,< 2 >""' ...; 2/rrT/ x 
exp { ± i ( T/ - 1r I 4 ) } , then in the region where 
T/ » 1, Xo is reduced to the form 

2" _tf ~ 
Xo = V~ Cf " sin (j f'1' dx + ~ ) . 

x, 

On the other hand, x - s and T/ - 0 as x - co , 

and, by using the asymptote Yo(T/)- (2/rr) In (2/Tj), 
we get Xo ~ rr-1 C 2xi cos Tlo· In order that this 
asymptote go over into Xo""'...; 2/rr sin (Kr + 60 ) for 
Kr < 1, it is necessary to choose C by the formula 

C = J!r n/2ix!a cos 1]0 , 

which also gives in the region r ""' r 0 
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