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The effect of the recoil on the two-particle interaction energy is considered for the case of 
a scalar field theory. 

LET us consider a system of two nonrelativistic 
particles which interact with each other through a 
scalar boson field. The energy operator of this 
system can be written in the following form 
(ti=1): 

(1) 

where ak and ak are the operators of second quan
tization; M and J.L are the total and reduced masses; 
R is the coordinate of the center of mass; W ( r) is 
a given potential as a function of the relative dis
tance r; the function Vk( r) has the form 

The problem consists in the enumeration of the 
eigenvalues of the operator (1) for arbitrary values 
of g. 

We perform the canonical transformation 

S ~ exp {~ (akf~ (r, R)- a~ {k (r, R))} (3) 

and assume that the auxiliary function fk satisfies 
the supplementary condition 

'_B(f~V{k- f~<Vf~) = 0, 
It 

which is valid in both the coordinates R and r. 
After averaging over the vacuum state ( ak<I>o = 0), 
the transformed energy operator has the form 

(<flo, s-1 HS<f>o) = H 0 + L (J)" I {k I" -i-- Ik ".B I v Rh 12 

~ k 

+f.- '_B I "Yrfk i2 + '_B (VkfkeikR + V~f~e-ikR), (4) 
-~ k k 

where H0 denotes the first three terms of the op
erator (1). 

We shall seek the minimum of the energy for 
the class of functions "1!1( r, R) = n ( R) 1/J ( r). Set-

ting the functional derivative of the energy with 
respect to the functions fk equal to zero, we ob
tain for the function 

'llk (r, R) = f" (r, R) I Q (R) 'i' (r) (5) 

the following equation 
1 2 1 2 . , 1 v"Q , 1 v"¢ 

- 2111 V'R'llk- 2~ Vr'llk-+- Wf<'llk--;- ZM lf!k Q-+- 2~ 'llk ~ 

= - gQ (R) e-tkR \jJ (r) V~ (r). (6) 

The solution of Eq. (6) is of the form 

where the coefficients an and bn are given by 

an = \ u;, (R) e-tkR Q (R) dR, 

bn ~ \ v: (r) v~ (r) \); (r) dr, 

(7) 

(8) 

and un and Vn are the eigenfunctions of the equa
tions 

(9) 

The indices n and n' in the expressions (7) - (9) 
stand for a set of three indices: n = (n1, n2, n3 ) 

and n' = (ni, n2, n3). 
Since we require the ground state of the system, 

we choose the functions Q ( R) and 1/J ( r) in the 
form 1- 3 

Q (R) = (a/rt)'l• exp (- aR2/2), 

\jJ (r) = (~/rt)'l· exp (- ~r2/2). (10) 

For this choice the functions Un and Vn' will be 
eigenfunctions of the harmonic oscillator, where 

The summation of the series in (7) can be easily 
carried out, following Gross, 2 by using the integral 
transformation 
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a-1 = \ exp (-sa) d5. 
0 

With the help of the known formula for the statis
tical matrix of the harmonic oscillator,4 we then 
obtain, using (5) and (10), the following expression 
for fk: 

00 

fh(r, R) = -gr;,~ dse-s"'kF (v~; kR;:) 
0 • 

. {. F · k m1 . k m1 . f3s \ 
X \v:SM' rM, --;tl 

_ F { _k_ tnz . _ k mz . ~ _)} 
\ff1M' rM'fl' 

F (x, y, z) = exp (--{- x 2 (I- e-22)- iye-z}. (11) 

The supplementary condition for the function 
fk(k, R) is satisfied. Using the equation for fk, 
we can show that the energy is equal to 

E = (Ho) + ~ (Vk (r) eik~ f~t (r, R)). 
k 

Substituting (11) in (12), we obtain, e.g., for 

00 

E = (H 0) - 2g2 ~ I Yk 12 ~ ds exp (- swk) 
k 0 

X exp [- :: ( 1 - e--cxsfM) J {exp [ _ 8k; ( 1 - e-~s!P-) J 

(12) 

±exP[- :; (I+ e-~s/P-)]}. (13) 

In the case of weak coupling, expression (11) goes 
over into the expression obtained by Haken. 5 

As an example for the application of expression 
(13), we consider the problem of the interaction of 
an exciton with longitudinal optical phonons [ W ( r) 
= - e2/n2r, where n is the refraction index of 
light]. Assuming that a « 1 and JJ.W/{3 « 1, we 
find (see also reference 3) 

E = 3~/4f1- 2e2n-2 (~/n)'l•- 2g2aw(mw/n~)'l•, a = 0,76. 
(14) 

In real crystals the last term of (14) is small 
even for g2 R:i 10. The approximate value of {3 will 
therefore be equal to 16JJ.2e4/97Tn4, which guarantees 
the validity of the inequality JJ.W/{3 « 1. 

If the trial functions U ( R) and If! ( r) are chosen 
of the form (10), the expressions (11) and (13) give 
the exact solution to our problem. 
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