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For crystals of arbitrary symmetry, we consider the problem of determining the phonon fre
quency spectrum, in connection with the investigation of one-phonon transitions in the 
Mossbauer effect and incoherent scattering of "cold" neutrons. 

INTRODUCTION 

A knowledge of the distribution function lf! ( w) for 
the phonon frequency spectrum is of great import
ance for the study of the properties of solids. Since 
the work of Placzek and Van Hove, 1 it is known that 
incoherent one-phonon scattering of neutrons en
ables us to establish the frequency spectrum in the 
case of cubic crystals with a single atom in the 
unit cell. Recently Visscher2 pointed out that ana
logous information concerning the phonon spectrum 
of an isotropic body can be gotten by studying the 
resonance absorption of y rays in a crystal 
(Moss bauer effect) with emission of one phonon 
(where the energy change is compensated by the 
Doppler effect from an appropriate motion of the 
source). Using the results of a paper of Lamb, 3 

Visscher gave a detailed analysis, within the 
framework of the isotropic approximation, of the 
conditions under which one can determine lf! ( w) 
experimentally. 

For both methods, a very important question is 
the possibility of determining the frequency distri
bution function for crystals of arbitrary symmetry 
with any number of atoms in the unit cell. The 
present paper gives a treatment of this problem. 
As applied to "cold" neutrons, this question was 
first treated by Oskot-skil. 4 

The two processes, which at first glance appear 
to be different in character, permit of analogous 
descriptions for one- and multiphonon transitions. 
This is related to the fact that in the resonance 
absorption we will be interested only in those 
transitions for which tiw » r (where tiw is the 
energy of the phonon and r is the width of the 
resonance level). 

1. THE MOSSBAUER EFFECT 

Suppose a nucleus located at a lattice site makes 
a transition from an excited state A* to the state 
A, with emission of a y quantum. If we take into 

account a possible change in the phonon distribu
tion, we can write the matrix element for such a 
transition in the form 

Mll=<k, A, {n'}[H1 [A*, {n}) 

= M nuc < {n'} J exp {ikRm(3} [ {n} ), (1) 

Here { n }, { n' } are the sets of phonon occupation 
numbers before and after decay of the nucleus, 
Mnuc is the matrix element corresponding to the 
decay of a free nucleus, k is the wave vector of 
the y quantum, Rm{J is the coordinate of the nu
cleus labelled {3 in the m-th unit cell, at the mo
ment of decay. 

The expression for Rm{J has the form 

Rm/3 = R~(l + Umf3, R~(l = fm + Pil• (2) 

where rm and P{J denote, respectively, the equili
brium position of a selected site which character
izes the elementary cell, and the position of the 
{3-th atom relative to this site. 

The displacement of an arbitrary atom is con
veniently represented in the form 

Um(l = ~ (1i / 2J.11l Wcx (f) N)'l• [V f3cx (f) exp {ifrm} aa (f) 
t, (1. 

(3) 

where f and wa are the wave vector and frequency 
of the phonon, a is the number of the branch, a 
and a+ are the operators for annihilation and ere
ation of the phonon, N is the number of elementary 
cells in the crystal, and J.l{J is the mass of the {3-th 
atom. The complex V {Ja are orthonormal: 

2] V(lcx (f) V~cx' (f)= bcxcx'· (4) 
(l 

Without loss of generality, we set rm == 0. In 
accordance with the usual procedure, considering 
(3), we represent the exponential in (1) as a prod
uct of exponentials corresponding to the individual 
normal vibrations. We expand these exponentials 
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in series, keeping the first three terms (the re
maining terms give a contribution which tends to 
zero when N- oo ). From (3) it follows that only 
the second term gives a transition which is not 
diagonal in the occupation numbers. 

We average the square modulus of the matrix 
element (1) over the initial equilibrium distribu
tion, taking account of the independence of the in
dividual oscillators. After transformation, we find 
for a process in which s phonons participate, 

I M{; 12 ·= [Mnucl{:)"exp {- ~3 ~·I q:!cx~f;)l" [2ncx (f)+ 11} 
a,f a 

s 

X II I qV~cx1 (ft) 12 [nwcx1 (ft)]-1 [71'.1 (ft) + + ± + J. (5) 
l=! 

Here Rj3 denotes the recoil energy for an isolated 
nucleus, 

(6) 

and q is a unit vector in the direction of k; n IS 
the equilibrium value corresponding to the crystal 
temperature. The upper sign inside the brackets 
in the product in (5) corresponds to phonon emis
sion and the lower to phonon absorption. The prime 
on the sum in the exponential in (5) means that the 
s terms with (a, f) = ( C<i, fi) have been omitted. 
For finite s, the contribution of these terms to the 
sum is negligible, and from now on we shall omit 
the prime. 

Now let us determine the probability of emis
sion of a 'Y quantum in the direction q with energy 
Ey for an s-phonon process, where we take the 
probability per unit energy range and per unit solid 
angle. 

Using the standard formulas of perturbation 
theory and changing from summation to an integra
tion over phase space, we find (cf. (5) ): 

W~ (E.,, q) = W0 e-z13 (R!l)s (vo)s _!_! S "" \' d3 f 1 .•• d3 f s 
(2n)as s L.J .\ 

a.1 ... as • 

s 

X II I qV {3cx1 (ft) 12 [nwcx1 (f;)r1 (ncx1 + + ± +) 6 
i=I 

x(Ey-E0±nWcx1± .. . ±nwcxs) =W0 F~(Ey, q). (7) 

Here E0 is the energy of the excited state, W0 is 
the probability of 'Y decay for the free nucleus, v0 

is the volume of the elementary cell, S is a sum 
over the s + 1 different combinations of absorbed 
and emitted phonons, and 

(8) 

(The energy transfer to the lattice is small com
pared with the energy of the 'Y quantum.) 

It is not difficult to show that the relation 

2; ~ F~ (Ey, q) dEy = I (9) 
5=0 

holds for the F$. 
For resonance absorption of a 'Y quantum 

(Ey, q), the probability of an s'-phonon process 
is given by the same expression (7), except that E0 

and E 'Y interchange places in the argument of the 
o function. If the source moves with velocity u 
and the target is sufficiently thin, the cross sec
tion for resonance absorption accompanied by an 
s-phonon process in the source and by an s' -pho
non process in the target is (compare the analo
gous expression in reference 2): 

ass' (I::J.E, q) = Q g~' ~ ~ F~ (Ey, q) F{ (E"{ + I::J.E, q) dEy. 
13.1. (10) 

In this expression Q is the cross section for reso
nance absorption by a free nucleus, integrated over 
energy; g and g' are the numbers of identical nu
clei, having the resonance level, in the elementary 
cells of source and target [the summation in (10) 
extends only over these nuclei]. From now on, 
primed quantities refer to the target. 

For the Doppler shift t..E we have the relation 
t..E = Eyu·qjc. 

The expressions we have found enable us to 
analyze completely the general case. Suppose 
that one-phonon processes play the prime role in 
the range r « t..E < tiwmax (however, see later). 
Then in this interval the resonance absorption 
cross section reduces to (t..E > 0) 

r;1 (11£' q) = r;01 (I::J.E' q) + r;10 (/1£' q) = Q (2~)3 R g~' qi q" 

V1 (f) v"* (f) 
x~exp{-Zil-Z~}{~~d3 f llcxliwcx(:l (li"rt(f)+ 1) 6 

{l,A ex 

v'1 (f) v'"* m 
x(11E-nw"')+2;~d3 f ~-~. ~-~ (n~(f)+1)6 

~ liw~ (f) 

X (!::J.E- nw~)} (11) 

(where we sum over repeated Latin superscripts). 
For the further analysis it is useful to deter

mine the cross section for the true Mossbauer ef
fect, a 00 ( 0, q). Expressions (10) and (7) cannot be 
\l.Sed for this directly, since (10) contains a product 
of two o functions. This result is a consequence 
of neglecting the width r of the excited state. Even 
when this is valid for transitions involving phonons 
(tiw » r ), in computing a00 we must consider the 
fact that r is finite. We introduce in place of 
o ( Ey = E0 ) an expression of the form 
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1 r;2 
n (Ey-£0) 2+ 1' 2,!1 • 

We then find for a 00 , 

1 1 ' 
aoo (O,q) = ao (q) = Q :rtl' gg' ~ exp {- Zr>- Z~.}. (12) 

(l.). 

We note that a0, like a', can in general have a 
sizeable anisotropy. This will especially manifest 
itself in strongly anisotropic structures, for ex
ample in layer lattices. In such cases there are, 
a priori, directions of the wave vector of the 'Y 
quantum for which Z will be especially small. 

Let us consider a single crystal of an arbitrary 
crystal system, having one atom per unit cell. 
Each of the terms in the curly brackets in (11) is 
a symmetric tensor of second rank, having the 
symmetry of the crystal. When it is brought to 
principal axes, such a tensor has in general three 
independent components. We determine the ratio 

ar (!'!£, q)jao (q) 

for three mutually perpendicular directions of the 
vector q relative to a fixed orientation of source 
and target, and sum them. If we make use of the 
condition V a· V~ = 1, it is easy to see that the 
result will not contain the polarization vectors. In 
the integrands in (11) we are then left with only a 
dependence on the phonon energy. Separating ex
plicitly the integration over wa, and introducing 
the frequency distribution 1/J( w) for the phonon 
spectrum normalized in accordance with the rela
tion 

ivo(2nt<~~ ~ d3f='IJJ(m)dro, (13) 
a. flwa.=dw 

we get 

If the lattices of source and target are the same 
and T = T', then (14) uniquely determines I/J(6.E/ti ). 
Thus measurement of the cross sections a 1(6.E, q) 
and a 0(q) for three directions enables us to find 
the frequency distribution for a crystal of abritrary 
symmetry. 

In the case of uniaxial crystals, the symmetric 
tensor of second rank has two independent compo
nents and it is consequently sufficient to make two 
measurements, first directing the vector q along 
the symmetry axis of the crystal and then along 
any direction in the plane perpendicular to this 
axis. 

In a cubic crystal, the second rank tensor de
generates into the unit tensor, so that one measure
ment in an arbitrary direction suffices. The iso
tropic case, treated by Visscher, 2 is actually 
equivalent to the case of a cubic crystal. 

The presence of the temperature dependence in 
both terms in (14) opens the attractive possibility 
(for T ~ T') of separately determining 1/J and 1/J'. 
[We note that here it may be useful to reverse the 
direction of motion of the source (6.E < 0 ), which 
results in the replacement of n by n + 1 in (14).] 
The realization of this possibility would enable us, 
on the one hand, to determine the spectrum for the 
undistorted lattice of the target and, on the other 
hand, to obtain valuable information concerning 
changes in the frequency spectrum resulting from 
defects in the source lattice, in particular concern
ing the nature of the vibrations of an atom in an 
interstitial position. 

We note that this separation will involve some 
experimental difficulties, since the necessary in
crease in temperature of one of the crystals re
sults in a reduction of a0 and a 1• This imposes an 
obvious limitation on the value of ( Z + Z' )T=O· 
[See (11) and (12).] 

Now we consider crystals having an arbitrary 
number of atoms in the unit cell. In this case we 
make the assumption that the factors exp {- Zf3 
- Z~ }, which depend on the integral properties of 
the spectrum, differ only slightly for any pair {3, A.. 
This will be valid in any case for Zf3, Z~ « 1. 

Again we determine the sum of the ratios aYa0 

for three mutually perpendicular directions: 

3 

~ ~ a1 (l'!£,q1)/a0 (qz) = ~ nfRv0 (2nf3 

l 

X {~ ~ ~ d3 fV flo. (f) V~" (f) [lim" (f)J-1 (na + I) o (!'!£-lima.) 
g a,(l 

+ i ,f; ~ d3fV).~ (f) v;:, (f) [nw~ (f)r1 (n~ + I) o (!'!£- nro~)}. 
•. . (15) 

If we use condition (4) and relation (13) (where 
the left side of (13) should now contain an additional 
factor 1/g ), we again arrive at (14). Thus in this 
case also, when the assumptions made above are 
valid, it becomes possible to determine the fre
quency distribution function for a crystal of arbi
trary symmetry. 

In the general case, when there are atoms of 
different sorts in the unit cell, 1/J( w) cannot be de
termined from the differential cross section of the 
one-phonon process. This is easily seen by analyz
ing the general expression (11). 
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A few words about multiphonon processes. We 
know that as a rule the frequency distribution func
tion will have at least two maxima. If these max
ima are sufficiently sharp, and if twice the smaller 
critical frequency is greater than the maximum 
value w0 , then in the range of values of ~E from 
0 to tiwmax the role of two-phonon and, a fortiori, 
of multiphonon processes will be markedly re
duced. 

However, even when the multiphonon processes 
make a significant contribution to the total cross 
section a(~E, q), if we use the isotropic approxi
mation for s + s' =::: 2 we can consistently include 
all transitions involving more than one phonon. In 
fact, for sufficiently low values of ~E( « tiwmax) 
the contribution of the multiphonon processes is 
negligible ( l/J( w- 0) - 0) and consequently they 
do not disturb the determination of the frequency 
distribution in this region. Moreover, for suffi
ciently low frequencies, l/J( w) can be computed 
directly if we know the elastic constants of the 
crystal. For an arbitrary ~E, in multiphonon 
processes there are created practically no phonons 
with energies in a sufficiently narrow interval 
around tiw = ~E (again because l/J( w- 0)- 0 ). 
Because of this, the quantities ass( for s + s' 2:: 2) 
can be expressed in terms of the function l/J( w) as 
determined for the region w < ~E/ti. From this it 
is clear that the knowledge of l/J( w) for the initial 
part of the frequency range enables us, once we 
know the dependence of a(~E, q), to find a1 (~E, q) 
and with it l/J( w) for the whole range of frequencies 
of the phonon spectrum. 

2. "COLD" NEUTRONS 

The results presented in the preceding section 
can be carried over without difficulty to the case 
of incoherent scattering of "cold" neutrons. The 
square of the matrix element describing the in
elastic scattering of a neutron will have the form 
(5) with the appropriate value of Mnuc. and with 
k = k1 - ko. where ko and k1 are the wave vectors 
of the neutron before and after scattering. 

Let us consider the case where the crystal con
sists of identical atoms. The differential scatter
ing cross section is expressed (for fixed k0 ) as 

do (k1) I dk1 = ~do' (k1) I dk1, 

do' (k1) I dk1 = Ooo (n2 I 4rrk0mg) ~ F~ (£1, q), (16) 
(3 

where F~ ( E1, q) is defined in accordance with (7), 
with Ey and E0 replaced by the final ( Et) and the 
initial ( E0 ) energy of the neutron. (We mention 

that Eq. (9) will no longer be satisfied, since the 
quantity R/3 cannot be treated as constant for vary
ing E1.) In (16) we use the following notation: aao 
is the total incoherent scattering cross section for 
a rigidly bound nucleus, and m is the mass of the 
neutron. 

Let us consider a single crystal with arbitrary 
symmetry. Considering the case of a neutron with 
energy E0 less than the Debye energy, and assum
ing that T cryst ;S ®n and J.1. » m, we find for Z13 
a value much less than unity. Because of this we 
will disregard any possible weak dependence of the 
Debye-Waller factor on {3. We then have for the 
one-phonon process, 

do1 (k1)1 dk1 = o0 (k) (n2R I mk0g) q1q"v0 (2nt3 

X~~ d3fv~a. (f) v~: (f) [hwa. (f)r1[(na. + I) 6 (£0 - E1 - nwa.) 
a.,{3 

+ na.6 (£0 - £ 1 + nwa.)J, (17) 

where a0 ( k) is the differential cross section for 
elastic scattering per unit solid angle. 

In the case of the Mossbauer effect there was a 
simplifying circumstance that was equivalent to the 
absence of any difference between the directions of 
the vectors q and k1• After fixing the scattering 
direction in the neutron case (as is done in the ex
periment), to find the function l/J ( w ) for an arbi
tracy crystal we must proceed somewhat differ
ently than in the preceding section. Namely, we 
must determine da1 (kt)/dk1 and a 0(k) for three 
positions of the single crystal which differ from 
one another by a cyclic permutation of the coordi
nates. 

Let us represent (17) in the form 

(I I o0 (k)) do1 (k1) I dk1 = q1qkTik. (18) 

We denote the direction of the principal axes in 
the first position of the crystal by x, y, z. Then 
the right side of (18) gives 

yxx (qx)2 + TYY(qY)2 + yzz (qz)2. 

For the other two positions of the crystal we 
have, respectively, 

yYY(qx)2 + yzz (qY)2 + rxx (qz)2. 

Summing the three equations, we find q2Tii = Tii. 
Comparing (18) with (17) and using (4) and (13), 

we arrive at the relation 

3 

~ ~ _1 _dcr1(k1l [ = ~~'P (L'iE) [e.lEfxT _ 1r1 (19) 
3 1 cr0 (k) dk1 l 2mkofl L\E \ 1i ' 
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where 

!lE = £ 1 - £ 0 > 0. 

Thus, by using three positions of the crystal and 
determining the cross section for one-phonon inco
herent scattering da1(k1 )/dk1 as a function of E1, 

and the elastic scattering cross section a 0( k) for 
the corresponding values of k, we can find the pho
non spectrum of a crystal of arbitrary symmetry 
having any number of identical atoms in the unit 
cell. 

In the case of uniaxial crystals, two positions of 
the crystal are sufficient, but it is necessary to 
know exactly the direction of the symmetry axis. 
In a cubic crystal a single crystal position is suf
ficient, and we arrive at the result of Placzek and 
Van Hove. 1 

If Z(3 « 1, which is often the case when working 

with "cold" neutrons, it is obviously sufficient to 
measure only da1(k1 )/dk1• 

The arguments concerning the inclusion of 
multiphonon processes which were presented at the 
end of the previous section remain valid also for 
the present case. 

The author is indebted to Ya. A. Smorodinski1 
for valuable discussions. 
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