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The methods of superconductivity theory are applied to a Heisenberg type four-fermion two­
component Lagrangian with cut-off. Owing to the rearrangement of the vacuum state, the two­
component nature of the initial field does not hinder the appearance of a fermion mass. 
Boson excitations are found which are analogous to acoustic excitations in a superconductor. 
Interaction between the excitations is discussed. 

WE shall consider the simplest Lagrangian, 1 Assuming that the mass m = I~ I « A, we find 
containing only a two-component spinor field u (x): that for (6) to be fulfilled it is essential that 
L =- u+c;pu _ ~ ')., (ugu) (u+gu+) ( 47r}-2AA 2 should be very close to 1, i.e. Am2 « 1. 

(1) 

Here ar = (a, 1 ), ap = arPr = a· p - a0p0, a is the 
Pauli spin matrix and g = iay. The Heisenberg 
operators u (x) and u+ (y) obey the usual anti­
commutation relations { u (x, t ), u+ (y, t)} 
= o ~x - y). We assume a cut-off at a large 
momentum A, the physical reason for which is 
not considered. The Lagrangian L is not invar­
iant with respect to the operations P : x - - x 
and C : u- gu+, but is invariant under CP and T. 

From (1) we have 

crpu + f ')., (ugu) gu+ = 0. (2) 

We use the methods of the theory of superconduc­
tivity in order to solve (2). Following the work of 
Gor'kov2 we introduce the quantities 

G1 = (Tu (x) u+ (y)), 

F = (u (x) u (y)), 11 = t ')., (u (x) gu (x)); (3) 

The hypothesis of such a connection between the 
interaction constant and the cut-off was put forward 
in Zel'dovich's work. 3 A more rigorous discussion 
leads to an integral equation instead of (5), with the 
constant A replaced by an irreducible four-pole. 
We shall find that this only changes the relation 
between the mass and the parameters A and A. 

It is convenient to go over to a four-component 
description. We introduce 

\jJ = CL\~m) gu+) ' G = (\jl (x) \jJ (y)). 

Equation (4) then takes the form 

(p+m)G(p)=-i, 

(7) 

(8) 

where p = 'YrPr = 'Y • p - y 0p0, 'Yr being the usual 
y matrix in the Weyl representation. Equations 
(7) and (8) describe a Majorana particle of mass 
m: if we introduce the charge-conjugation matrix 

L\ (g 0) 
C=m o-g, 

where the symbol < ... > denotes an expectation then 
value for the physical vacuum. Taking into account, 
as in the theory of superconductivity, only qualita-
tive effects connected with rearrangement of the 
vacuum, we obtain from (2) and (3) 

crpG1 (p) -tlgFT (p) = - i, opP (p) + tl'gG1 (p) = 0; 
(4) 

11' ==- ~ (' d4pSp(P(p)g) = -if.,/1' ~ 2+l~~2-i6' 
.l p (5~ 

'i'c (x) = \jJ (x) C = 'ljJ (x). 

With the notation of (7), the Lagrangian (1) takes 
the form 

L = - f 'li.O'i' + fs ')., rUiPr6'i')2+ <1JJ'i')2J 
(9) 

where d4p = (27r)-4dpdp0, p2 < A2, o- + 0. We shall find collective excitations analogous to 
Besides the trivial solution A* = 0, Eq. (5) can excitations in a superconductor.4 For this purpose 

have a non-zero solution for the condition let us consider the two-particle Green's functions. 
( 471" r2AA 2 > 1. I A 12 then satisfies the relation There are six types of such functions corresponding 

.. 1 d4p 1.. ( I \ A2 ) to the number of possible antisymmetrical ljJ com-
!~ -tA j p2 + JI'!.J2- i6 = (4n)2 \A2- 11 2]n TXl" .(6) binations: 
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K+ = ~ (i'iJ (x) Ys'P (x), i'iJ (y) Ys'P (y)), 

K_ =+ <'li(x)1jJ(x), 'iJ(y)'IJ (y)), 

Kr+ =- K+r = ~ (i'iJ (x) YsYr'P (x), i'iJ (Yhs'P (y)). 

As above, if we replace the irreducible four-pole 
bv the constant A., we obtain the following equations: 

K_ (q) =II_ (q) + iA.ll_ (q) K_ (q), 
K+ (q) = 11+ (q) + iA.II+ (q) K+ (q) + iA.ll+, (q) K,+ (q), 

K,+ (q) = 11,+ (q) + iJ.II,+ (q) K+ (q) + iA11m(q) Kn+ (q); 

~ ~ ~~ IT±=- - (p1pz ± m2), IT,+=- mq, -=-II+'· s,s. s,s. 
(10) 

(' d•p 
11m= \ ss [lim (PIPz- m 2) - 2p,,pznL 

• 1 2 

p, =, p + qj2, p 2 = p- qj2, sl.2 =Pi z + m2. 
' (11) 

The excitation spectrum is determined by the 
poles of the functions K. From (11) and (10) 
taking account of (6), we find that in the region q2 

«A 2 the function Kr+ does not have a pole, ~ 
has a pole q2 = 0 and K has a pole at the point 
- q2 ~4m2 - m 2/ln(A2/m2 ). Thus there exist 
odd-CP excitations of zero mass and even CP 
related to a two-particle state. 

Let us examine the interaction between the 
particles obtained. As an example we shall find 
the interaction between two fermions through ex­
change of the massless "~particle". The scat­
tering amplitude of particles with momenta p 1 and 
P2 into the state with momenta p3 and p4 is given 
by the expression 

(Pa. P4[T exp {~~ ~ d4x [(\j)irs'IJ)2 + (~'IJ) 2 ] } / p,p2). 

Let us look, for example, at the non-exchange 
term. The term of interest to us is of the form 

(irsh.l (irs)4,2 [ ~- ~ ~ < i'iJ ( ~) Ys'P (-f) , 
i'iJ(- ~)rs'P(-~))e-iqxd4x]. (12) 

Using equation (10) for the expression in square 
brackets in (12) to the accuracy of terms ,...., A.m2, 

we obtain 
if.: (q) = 0_ ( 1 + iJ..I'I+ ) = 0 1 (13) 

2 2 1- iJ..n+ 2 1- iJ..n+ (q) · 

According to (6) and (11) we have 
if.' (q) if. i (4n)2 

-2- = 2if.. (0+ (0)- n+ (q)) = q2 [In (A2;m2) - 3 / 4 + 2(1-f.)cotf.l)]' 

(14) 
where sin28 = - q2 /4m2• In spite of the smallness 
of the primary constant A., the effective interaction 
A.' ( q) is therefore not very small. As was pointed 
out by Zel 'dovich, 3 a similar situation occurs in 
the problem of resonance scattering, which has 
some features in common with the model considered. 

We shall explain the relation between the re­
sults obtained and the usual description of the 
interaction in the form 

L;nt = ei'iJ (x) y51jJ (x) cp (x). (15) 

The magnitude of e is determined by comparing 
(14) with the scattering amplitude for small values 
of q2, obtained by perturbation theory from (15). 
We obtain 

(16) 

Let us consider the question of renormalizations 
for the interaction (5). If we do not taken into ac­
count, as in deriving (14), the correction to the 
function G and the vertex part, we obtain for the 
effective interaction, analogously to (14) 

- 4e~D (q) = 4ie~j[q2 + ie~ BIT+ (q) ]. (17) 

Here the boson Green's function D (x- y) 
=<cp(x), cp(y)> and IT+ is given by Eq. (11). 
According to the rules of renormalization, we 
must subtract ie58rr+ ( 0) from the demoninator of 
expressions (7), after which (7) takes the form 

4ie2 [ ( e2 ( A 2 3 ) ) - 4e~D = q•o 1 + ·(2~)2 In m~ -4 

+ (2~)2 2 (1- 8cot8) r (18) 

By comparing (18) with (14) we can verify that 
expression (16) does in fact determine the renor­
malized physical charge of the usual theory: 

[ 
2 2 -1 

2 eo ( Ao 3 \ J e = e2 I+- In--- I o 4n2 m2 4 ) 
(19) 

It can be seen from (19) and (16) that (18) agrees 
with (14). In this way we can understand in the 
model discussed the calculated quadratically di­
vergent "self mass" of a boson in the usual re­
normalization. 

The authors thank S. T. Belyaev for valued 
advice. 

Note added in proof (15 December, 1%0): After our work was 
sent to be printed we became aware of a work by Nambu in 
which analogous results were obtained (Y. Nambu, Report to 
Midwest Conference on Theoretical Physics, March 1960, pre­
print). 
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