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An expression is derived for the Fourier components nq of the disturbance to the electron 
density, produced by a body moving in a plasma, in the limit as the wave vector q- 0. It is 
shown, in particular, that the exact expression for nq contains terms proportional to 1/q, 
which are absent in the first approximation of perturbation theory. The formulas are em
ployed to calculate in various particular cases the effective cross section for scattering of 
electromagnetic waves of wave lengths considerably in excess of the characteristic dimension 
of the body. 

1. FORMULATION OF THE PROBLEM 

IN this paper we report on a theoretical investiga
tion of the scattering of electromagnetic waves by 
a trail left by a moving body in an isotropic elec
tron-ion plasma. This problem has become quite 
timely of late. t-a 

We assume that the plasma is sufficiently rare
fied, i.e., that the ion mean free path in the plasma 
is much greater than either the dimensions of the 
body or the length of the scattered electromagnetic 
wave: 

(1) 

The scattering of an electromagnetic wave by a 
body moving in a plasma consists of scattering on 
the body proper, for example a metal sphere, and 
scattering on the trail produced by the body, i.e., 
the region of perturbed electron concentration 
produced by the motion of the body. The scatter
ing by the body itself is described by the usual 
formulas of diffraction theory and will not be cal
culated here. We note at once that since the di
electric constant of the trail is low, the scattering 
from the metallic body itself will be much greater 
than from a trail region of the same size. It is 
therefore clear that the trail can make a scatter
ing contribution comensurate with the contribution 
of the body itself only if trail regions larger than 
the body participate in the scattering. In the scat
tering by structures that diminish slowly with dis
tance, such as trails usually are, the regions ef
fectively participating in the scattering have nor
mally dimensions on the order of the wavelength 
(the contribution from greater distances is strong-

ly reduced by the interference between waves scat
tered by the different parts of the trail). It is 
therefore clear beforehand that the trail can make 
a noticeable contribution to the scattering only at 
wavelengths much greater than the characteristic 
dimension of the body R0: 

(2) 

We shall confine ourselves to this case throughout. 
Since the body produces at large distances away 

from it only small changes in the dielectric con
stant (compared with unity), it is natural to em
ploy perturbation theory for the calculation of the 
scattering. (The validity of the theory will be dis
cussed later on.) Recognizing that the variation of 
the dielectric constant of the plasma is connected 
with the perturbation of the electron density on 
by the formula 

4:rte2 

{)e (r) = - mw 2 {)n (r) 

( e and m are the electron charge and mass) we 
obtain by the well-known perturbation theory 
formula the amplitude of the scattered wave at 
distances large compared with the wavelength: 

e• eikR 
E' = mw•e -R- nq [k' [k'E0]]. (3)* 

Here E0 is the amplitude of the incident wave, k' 
is the wave vector of the scattered wave (I k' I 
= k =fEw/c), E is the dielectric constant of the 
plasma, and nq is the Fourier component of the 
electron-density perturbation: 

nq = ~ {)n (r) e-iqrd3r, q = k'- k, I q 1 = 2k sin t (4) 

*k'[k'E0] = k' X (k' X E0) • 
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( k is the wave vector of the incident wave and 1/J 

is the scattering angle, i.e., the angle between k 
and k'). The effective cross section of scattering 
in a solid-angle element do is given by 

d - 1 (Wo )4 I nq 12 k4 . 2 •h d 
Ci - 16 2 2 - -2- Sin '1'1 0 

:TIe 'w, no 
(5) 

( 1/J 1 is the angle between k' and E0, w~ = 4m0e2 /m, 
and no is the unperturbed electron density). For 
comparison we give here the formula for the ef
fective cross section of scattering by a metal 
sphere of radius R 0 for A. » Ro: 

(6) 

As can be seen from (5), the problem of calcu
lating the effective electromagnetic-wave scatter
ing cross section reduces to the calculation of the 
Fourier components of the variation of the elec
tron density. The perturbations produced in a 
plasma by a rapidly moving body of dimensions 
greater than the Debye radius were considered in 
detail by A. V. Gurevich. 2 To calculate nq for 
this case we could therefore, in principle, use 
Gurevich's results. It turns out, however, that it 
is simpler to determine nq directly from the 
kinetic equation. This yields a more rigorous 
solution for the problem, for it permits evaluation 
of certain effects not considered in reference 2, 
which become significant when q is small. 

2. DERIVATION OF THE GENERAL FORMULA 

We consider in the present paper only the case 
when the velocity V0 of the body is much less than 
the thermal velocity of the electrons: 

(7) 

Under these conditions the electron density is 
directly connected with the electric potential cp by 
means of the Boltzmann distribution function 

(8) 

On the other hand, the distribution of the ions 
should be determined simultaneously with the 
potential. We shall solve this problem with the 
aid of the kinetic equation for the ion velocity and 
coordinate distribution function. Inasmuch as the 
distribution function is independent of the time in 
a frame fixed in the body, the equation in this 
frame has the form 

at at 1 a - v- --- (eq; + U) = 0. or iJv Mar 

[By virtue of condition (1) we can neglect colli
sions between particles.] Here M is the ion 

(9) 

mass, v the ion velocity in the frame in which the 
body is at rest, and U the energy of interaction 
between the ions and the surface of the body. In
troducing the ion velocity in the system at rest 

u = V + V0 , 

we can rewrite (9) as 
at 1 at a ar (u- V0)- M au ar (U + eq;) = 0. (10) 

The electric potential cp satisfies, with allowance 
for (8), the equation 

~q; =- 4ne (~ fd3u- n) = - 4ne (~ fd 3u -n0e•"P!kT) . (11) 

In Eq. (10) it is convenient to separate from f 
the coordinate-independent part f0, which is equal 
to the distribution function at an infinite distance 
from the body: 

f=f'+fo, f 0 = n0 (Mj2nkT)'f, exp {- Mu2j2kT}. 

Substituting this in (10) we get 

a{' 1 ato a 1 at· a 
ar (u- Vo)- :M au ar (U + eq;)- M au ar (U + eq;) =s2) 

To solve the system (11) and (12) we change 
over to Fourier components in the coordinates. 
Equation (12) in Fourier components becomes 

. ( V ) t' e at 0 • 1 i . (U tq u - 0 q - M au tqq;q- (2n)3 M .) tql q, 

+em ) at~-q, d3q - i .9_ a to u = 0. 
-rq, au 1 M au q (13) 

We now recognize that we are interested only in 
long waves, i.e., in small values of q, and let q 
tend to 0. Since Uq certainly tends to a constant 
limit as q- 0, the last term in (13) can be dis
carded. (The first two terms must be retained, 
since, as will be shown later, fq and C{Jq tend to 
infinity as q- 0.) In the third term we can also 
put q = 0. For this purpose it is necessary that 
the integral in this term converge. But, as we 
shall see later, the quantities fq and cpq are 
proportional to 1/q as q- 0, and consequently 
this integral converges. Finally we obtain as q 
-o 

. ' e a{o · 
1q (u- V0) fq- M au 1qq;q =I (u), (14) 

I ( ) 1 \ . (U -t ) a(__q cf3q - 1 \a{' ~ (U ) da 
u = M .) 1q q - eq;q au (2n)3- M .)au ar +eq; r. 

(15) 

Our problem is thus subdivided into two stages -
calculation of the function I ( u) for the given body 
and the solution of (14). We note that I ( u) is 
proportional to the product of the potential by the 
correction to the distribution function, and conse
quently differs from zero only in the second per-
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turbation-theory approximation in the potential. 
It is evident therefore that the results of Kraus 
and Watson, 3 who carried out the calculations in 
first approximation, are certainly incorrect at 
large distances. 

We change now to Fourier components in (11). 
We note here that in the expansion of nk 
= n0 (eecp/kT - 1)q in powers of ecp/kT, 

nq =no (k~ (()q + 2;.2P ~ (()q, (()q-q, (~::a+ .. ·) ' 
the first term varies as 1/q, while the others 

(16) 

tend to constants and can be neglected. Therefore 

nq = n0e(j)q / kT 

and instead of (11) we have as q- 0 

x 2(()q = 4ne ~ f~d3u, 

where K = -1 47rnoe2/kT = 1/v'2RD, with RD the 
Debye radius. 

(17) 

(18) 

We note that for small q the system of in
homogeneous nonlinear equations (11) and (12) is 
reduced to a system of linear inhomogeneous 
equations (14) and (18). This result has a simple 
physical meaning: when q is small, the large dis
tances from the body, at which the deviations of 
the distribution function from equilibrium are 
small, become significant. It follows from (14) 
and (18) that fq and cpq are actually proportional 
to 1/q, as pointed out earlier. 

Let us divide both halves of (14) by iq · ( u - V0 ) 

and integrate over d3u. The integrals with 
singular denominators iq · ( u - V0 ) should, ac
cording to Landau, 4 be taken with suitable circuits 
about the singularities. To take this into account, 
it is enough to replace q · V0 by q · V0 + io, where 
o- + 0. As a result we obtain 

(' t'd3 e ( ato Q d3 
) q u- M (j)q) au Q (u- Vo)- ib u 

- _!_ \ /(u) da 
- i j q(u-V0)-ib U. 

(19) 

Solving equations (18) and (19) simultaneously and 
using the fact that 8f0/8u = - ( uM/kT) f0, we get 

J_ \ I (u) d3u 
tq ~ n(u-V0)-ib 

(20) nq = 

[I+ (~)'h ~ nu . e-Mu'fkTd3uJ 
2nkT J n(u-V0)-tb ' 

where n = q/l q I. Writing the integral in the de
nominator of (20) in Cartesian coordinates with the 
x axis along n, and using the well known identity 

f e-Y' .. dy = 2 -,.rrt[ i Vn- r eX'dx] e-a', 
.) y-a-tb 2 .\ 

-00 0 

(21) 

we obtain finally 

nq = i~ ~ n (u _!_ ~:i _ ib d3u I [ 2 - 2a (~ ex'dx - i Y2n) e-a'] , 

a=nV0 V 2~T. (22) 

It follows directly from (22) that the electron 
density decreases as 1/r2 with increasing dis
tance from the body, in agreement with the results 
of Gurevich.* We note that when V0 »'kT /M the 
denominator of (22) has a rather pronounced 
angular dependence, namely, a » 1 when n · V0 

"' V0, and the denominator is equal to zero in this 
case. At angles for which n. V0-/M/2kT =a « 1, 
the denominator is equal to 2. This result can be 
readily explained. The frequency of the field com
ponent with wave vector q is obviously equal to 
q · V 0 in the coordinate system at rest. If q · V0 

» qvT, where VT "' -/kT /M is the thermal 
velocity of the ions, the ions do not have a chance 
to screen the potential. On the other hand, when 
q · Vo « qvT, the ions screen the potential so that 
the Debye radius and the potential 'Pq are each 
reduced to one half. We note also that the de
nominator of (22) coincides exactly with the ex
pression for the dispersion of ionic plasma waves. 
Since, however, these waves are strongly damped, 
no special significance should be attached to this 
fact. 

Let us proceed now to clarify the physical 
meaning of the quantity I ( u). For this purpose 
we turn in (14) to the coordinate space and assume 
that all the quantities depend (in the frame which 
is at rest) on the time only via the combination r 
- V0t, so that V08f' /ar = - af /at. We obtain 

ar ar e ato aq> 
Tt +ar-u-M auar =I (u) 6 (r- V0t). (23) 

The left half of (23) is the total derivative of the 
distribution function with respect to time. From 
the physical meaning of the distribution function it 
is clear that I ( u) d3u is the number of particles 
per unit time which acquire, by collision with the 
body, velocities that lie in the interval d3u about 
u. Thus I ( u) serves so to speak as a sort of a 
"collision interval" for the ions with the body. 

This physical meaning of I ( u) enables us, by 
following the reasoning used to determine the form 
of the usual collision integral, to recast I ( u) in a 
different form, very useful for approximate calcu
lations. Let us change again to the coordinate sys
tem of the body. Let a particle passing near the 

*The formulas obtained can also be used, naturally, to cal
culate the perturbed electron density, etc., at large distances 
from the moving body. In the present paper, however, we shall 
not consider the transition to coordinate space. 
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body with an impact parameter p and an azimuth 
angle cp acquire a velocity v after scattering (by 
interaction with the surface of the body and the 
electric field surrounding it). Then the initial 
velocity of the ion is v1 = v 1 (v, p, cp), where the 
function v 1(v, p, cp) is determined by the scatter
ing law, and the number of particles that acquire a 
velocity v in a unit of time is merely the number 
of incident particles with velocity v1, i.e., 

pdp dq; vn0 (M I 2:rrkT)'I•exp {- M [v1 (v, p, q;) + V0 ] 2 I 2kT}. 
(24) 

We have assumed that the scattering is elastic 
(I Vt I = I vI) and that the incident particles have 
at infinity a Maxwellian distribution in the frame 
which is at rest. To find I is also necessary to 
subtract from (24) the number of particles with 
velocity v, knocked out by collision with the body 

pdp dq; vn0 (M I 2:rrkT)'I• exp {- M (v + V0) 2 I 2kT}. 

Finally 

I (v -t- Vo) =no C~rr v ~ pdpdq[ exp {-

-exp {- M (v2t/o)2 }l 

M[ Vt(V ,p,<p)+ V0)2} 
2kT 

(25) 

Thus, I ( u) can be readily calculated if the law of 
scattering of the ions on the body, with allowance 
for the electric field, is known. Naturally, formula 
(25) does not permit I ( u) to be calculated in the 
general case, since the electric field around the 
body is unknown, if for no other reason. We shall 
show in the next section, however, that in some 
important limiting cases this difficulty can be 
circumvented. 

Let us note that I ( u) enables us to express in 
simple fashion the force acting on the moving body 
if collisions between the body and neutral molecules 
can be neglected. Namely, multiplying (23) by Mu 
and integrating over d3u and d3r we obtain the time 
derivative of the total particle momentum, which is 
equal to the negative of the sought force. As a 
result 

F = - M ~ ul (u) d3u. (26) 

In the derivation of the formulas obtained in this 
section we have assumed that the particles do not 
lose their identity as they collide with the body and, 
in particular, that the ions do not become neutral
ized. It is obvious, however, that the final formula 
(22) is of great significance. In particular, it can 
also be used when the ions are partially or com
pletely neutralized. All the effects connected with 
neutralization modify in this case only the form of 
the function I ( u), which will no longer satisfy the 
law of conservation of the number of particles 

~I (u) d3u = 0. 

The results can be readily generalized to include 
the case of noticeable photoeffect or secondary 
emission of electrons from the surface of the body. 

3. CALCULATION OF THE "COLLISION 
INTEGRAL" I FOR DIFFERENT PARTICULAR 
CASES 

The function I ( u) can of course not be calcu
lated in general form for arbitrary bodies. In this 
section we shall determine this function for differ
ent limiting cases which are of principal interest. 
For simplicity we confine ourselves to the motion 
of a spherically symmetrical body, although in 
some cases (low and high velocities) the formulas 
obtained can be applied also to more general cases. 

a) Slowly moving body. To illustrate the method 
we shall consider first the case of the body moving 
in a plasma at a velocity much lower than the 
average thermal velocity of the ions (this case is 
probably only of methodological interest). In this 
case, in the zeroth approximation in V0, the poten
tial around the body is spherically symmetrical 
and independent of V0• Expanding the exponentials 
in (25) in powers of V0 we get 

I ( ) - (~ \'/, 'Mu -Mu'/2kT \ d d ( _ ) V u -no 2nkT) kT e .\ p ? q; u ul o 

( M )'/. -Mu'/2kT Mu V * ( ) =no 2nkT e 7iT u ou u ' 

(27) 

where J (p) is the angle between u and ut> Ut 

= v 1 + V0, and a'* is the so-called transport cross 
section of the body (see, for example, reference 5 ). 
For an uncharged sphere from which the ions are 
specularly reflected, we have 

Substituting (27) into (26) we obtain for the 
force acting in the body 

F = - (M2 I 3kT) c;*u3n0 V 0 , (28) 

where o'*u3 is the average value of a'* ( u) u3, taken 
over the Maxwellian distribution. Formula (28) 
coincides, as it should, with the formula for the 
force acting on a heavy particle in a light gas. 5 

b) Rapidly moving body with dimensions which 
are not small compared with the Debye radius. If 
the velocity of the body is high 

V0 ~ VkTIM, (29) 

the problem can be greatly simplified, for in this 
case the electric field exerts a small influence on 
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the scattering of the ions by the body. Actually, 
as was shown by Gurevich, 2 the electric potential 
of the body is in this case of order kT /e, or more 
accurately (kT/e)ln(Ro/RD), and when MVV2 
» kT it is less than the kinetic energy of the ions 
relative to the body. Consequently it is natural to 
neglect in the calculation of I ( u) the influence of 
the field and to consider only scattering of the ions 
by the surface of the sphere.* Further calculations 
depend on the law governing this scattering. To be 
specific, we confine ourselves to specular reflec
tion. All other cases can be analyzed analogously. 

It is now natural to represent expression (25) 
for I ( u) in the form I = It - I2 in accordance 
with the two terms in the integrand. For a sphere, 
I2 is simply 

I 2 = n0V0o0 (Mf2nkT)'h e-Mu'/2kT • (30) 

To calculate It we recognize that 

(v1 + V0 ) 2 = v2 + V~ + 2vV0 (cos tt0 cos it+ sin tt0 sin it cos cp), 
(31) 

where .Jo is the angle between v and V0 and .J is 
the angle between Vt and v. In addition, in the 
case of specular reflection pdp = t~R5 sin .J d.J. 
Substituting this in (25) we have 

( M )'!. R~ \' . 
I1=no,ZnkT vTjdcpsmitdit 

X exp {- 2~ [v 2 + V~ + 2vV0 (cos tt0 cos it 

+ sinit0 sinitcos cp)J}. (32) 

Since the exponential function has a large modulus 
by virtue of (29), we can calculate It by the 
method of steepest descents. It is easy to verify 
that the exponent in (32) has a maximum at cp = 71', 

.J + .Jo = 11'. Putting cp = 11' + cp', .J + .Jo = 11' + .J', and 
expanding in cp' and .J', we get 

I1 = n0 C:!rf'v sin tt0 ~ exp {- 2~ (v2 + V~-2vV0)} 
x ~ exp {- ~Z~" cp'2 sin tt0} dcp' ~ exp {- ~Z~" 1't'2 sin tt0} 

d·""' _ n0 R~ ( M )'!. { M ( V )•} X u - v;;- T 2JlkT exp - 2kT v- o (33) 

(We recall that v = u- V0 ). Thus, the total value 
of I ( u) is 

~( M ' •;, 1 { M •} 
I = nooo l :atkT) 2Vo exp - 2kT (v- Vo) 

( M \'/, { Mu2 }] 
- Vo 2nkT) exp - 2kT · (34) 

*We emphasize that this does not mean that the electric 
field is in general unimportant; the effect of the field mani
fests itself in the angular dependence of the denominator of 
(22). 

We note that by including terms of higher order in 
cp' and .J' we can readily determine the subsequent 
terms in the expansion (32) in .../ kT /MV5. We 
shall not stop, however, to calculate these correc
tions. 

c) Charged body of small size. Let us consider 
now a body with dimensions much smaller than the 
Debye radius, carrying a charge that satisfies the 
condition 

eQ<RDMvi, 

where Vi is the greater of the two quantities 
( V~kT /M) t/4 and .../ kT /M. (This is precisely the 
case considered by Kraus and Watson.3 We have 
already pointed out that their approximation does 
not include the effects which we are investigating). 
In this case the main contribution to I is made by 
the impact distances p which satisfy the condition 
RD » p » r 0, where r 0 is the greater of the two 
quantities R0 and Q/Mvt. For such values of p 
the field can be considered to be a Coulomb field 
exclusively, and the scattering angle .J is small 
and given by6 

(35) 

Expanding the right half of (25) in powers of .J, 
retaining terms up to .J2, and integrating with re
spect to p with cutoff at large when p ~ RD and at 
small p when p ~ r 0, we obtain 

I - 2 ( M )'/, -Mu'/2kT (MvVo + ~ [V2 2 
- :nno 2rr.kT e v 2kT 4 (kT)2 oV 

- (Vo v)2]) ~ it2p dp= ~~;· no (z:!r f' e-Mu'/2kT ( Vott- v~ 

+ 2:r [u2V~- (V0u)2l) v~ In ~;. (36) 

We note that when eQ « kTRD this formula is 
suitable for all body velocities V0• The formula 
(36) for I can, of course, be obtained without the 
use of (25), directly from definition (15) for I. For 
this purpose it is enough to calculate CfJq and fq 
by perturbation theory and substitute in (15). We 
note also that if R0 « RD, but at the same time 
R~ ~ (Q2e 2 /MkTV~) ln (RD/r0 ), we must add to (36) 
a term due to the scattering by the body itself, as 
given by (34) (when V0 » kT /M). (The two effects 
are additive in the approximation considered here.) 

4. CALCULATION OF THE EFFECTIVE 
SCATTERING CROSS SECTION 

a) Slowly moving body. Substituting (27) in (22) 
and neglecting everywhere V0 compared with u, 
we obtain 

(37) 
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where o*u is the average value of a* (u)u, taken 
over a Maxwellian distribution. Substituting in (5), 
we obtain the effective cross section for a smooth 
sphere 

d _ 1 (w0 ')4 (nV0) 2 M 2. 2 d 
o - sns c --wr 00 sm 'ljl1 o. (38) 

b) Rapidly moving large body. For this case 
I(u) is given by formula (34). Let us calculate nq. 
We introduce the notation 

A = __!:___ \' / 1 (u) d3u 
1 i j nu-nV0 -i6 

with A2 defined analogously. To calculate A1 we 
change over from integration over d3u to integra
tion over d3v. The integration is best carried out 
in spherical coordinates with the polar axis along 
n. In first approximation we can put v = V0 in all 
the factors preceding the exponents and replace the 
lower limit 0 in the integration with respect to dv 
by - oo We then obtain readily 

(39) 

The quantity A2 should be calculated in Car
tesian coordinates Ux, uy, and Uz with the x axis 
along n. With the aid of (21) we obtain 

Ultimately 
MV2 •;, MV2 · 'I a 

nq = n~o {[ ; - Jin( 2k;) e-a•] + i2 ( 2k;) 'e-a• ~ ex• dx} 
0 

a 

X f 2 ( 1 - ae-a' ~ ex' dx) - ia Vne-a'r1 (41) 
0 

and 

d- = sin•1jl1 ( w0)4 cr~ {[~- ~1-(MV~)•;, -a•J2 
" 16n2 c , q2 2 r n: 2kT e 

+ 4 (~~~)(e-a•~ ex• dx n [ 4 (I - ae-a• ~ exa dx r 
0 0 

(42) 

(We recall that a = n · V0 '-' M/2kT). 
The expression (42) (for a given lj!) has a sharp 

minimum when n. V0 ~ '-' 2kT /M or, introducing 
the angle a between n and V0, when I a - 1r /21 
~ '-' 2kT /MV5. This is as expected, since the trail 
of the body has a form which is prolate along V0, 

and scattering by a prolate body is always a maxi
mum at the angle of specular reflection from its 
axis, in this case when q · V0 is close to zero. 
(If q · V0 = 0, then k· V0 = k 1 • V0, i.e., the angle of 
incidence is equal to the angle of reflection.) Let 
us note also that nq increases sharply as q- 0. 
(Formally nq- oo as q- 0. Actually, however, 

the formula becomes invalid when q ~ 1/1, where 
l is the mean free path.) This means, in particu
lar, that the trail is capable of "focusing" all 
possible noises radiated in the plasma above the 
body. 

Formula (41) is valid for sufficiently large 
wavelengths. It is easy to show that in this particu
lar case this implies the requirement 

qR0 = 2 8: R0 sin ~ <I. (43) 

It is seen from (42) that when lj! is not close to 
zero, and the angle a is not close to 1r /2, the 
order of magnitude of da is 

do~ (~)4 cr~c• do. 
c ew•. 

Comparing this with Eq. (6) for the cross section 
of the scattering by the body itself, we find that 
the ratio of the intensity of scattering from the 
trail to the intensity of scattering from the body 
itself has an order of magnitude 

(44) 

The scattering cross section in the directions 
for which I a - 1f /2 I « '-' kT /MV~ is much greater: 

MV~ (w•)' cr~c2 do~-- - -do. 
kT c ew2 

It is seen from (44) that actually, for ordinary 
body dimensions and not too long waves, the main 
contribution to the scattering in practically all di
rections is made by the body itself and not by the 
trail. We emphasize, however, that this conclu
sion has been obtained by neglecting the magnetic 
field, which can change the entire scattering pic
ture appreciably. The influence of the magnetic 
field is the subject of another investigation. We 
indicate only that the results obtained in the 
present article are valid if 

eHJMc<qz YkTjM, 

where qz is the projection of q on the direction of 
H. 

Let us see now whether the perturbation-theory 
formula (5) is valid in our case. In order for (5) 
to be valid it is necessary to have E 1 « E0 over 
significant distances. It can be verified that in 
our case the significant distances are R ~ 1/q, 
over which E 1 ~ ( w0/c )2 a0E0• This leads to the 
condition 

(w0 /c) 2 o0 <I 

(for analogous arguments to justify of the appli
cability of the Born approximation in quantum 
mechanics see reference 7 ). Since the only fre
quencies that can be used to investigate the scat-



DISTURBANCES PRODUCED BY A BODY MOVING IN A PLASMA 191 

tering are w > w0, the condition for the validity of 
formula (5) coincides in our case with the main 
condition (2). 

c) Rapidly moving small body. Since the inte
gral of I, as defined by (36) and contained in the 
expression for nq, cannot be calculated for an 
arbitrary body velocity, we confine ourselves here 
only to the case when V0 » ,j kT /M. Neglecting u 
compared with V0, we obtain 

f = - 2ltQ2e2 ~] RD (~)'J, -Mu'/2hT 
MkT Vo3 n Ro no 2ltkT e 

x{V~- 2~ !V3u2 -(V0u)2 l}· 

Calculating the integral of I with the aid of (21), 
we obtain 

nq= 2ltQ2e2no lnRD[v~-(V0n)2][(1-2a2)(Vn 
q (2k3T3 MV~ )'/, ro 

+ 2i ~ eX'dx )e-a'+ 2ia J [ 2- 2a (~ ex'dx- i~tt)e-a' rl. 
0 0 (45) 

It is easy to verify that this formula is suitable 
when 

In the case when eQ/RD « kT, the formula for nq 
for q » 1/r1 can be obtained in the usual manner 
from the linearized kinetic equation, i.e., in the 
same approximation as used by Kraus and Watson3 

(a practically analogous calculation for the Fourier 
components of the potential was also made by 
Sitenko and Stepanov8 ). For the sake of complete
ness, we cite the corresponding formula: 

a - -

nq = + { 2 (RDq) 2 + [ 2- 2a (~ex'dx - i r lt) e-a•Jr~ 
0 (46) 

Substituting (45) and (46) in (5) we obtain da. We 
shall not write out these formulas. 

In conclusion, the authors express their grati
tude to Ya. L. Al'pert for interest in the work and 
for discussions, and to A. V. Gurevich for discus
sions and for an opportunity to see reference 2 
prior to publication. 
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