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A computation is carried out of Raman scattering upon reflection of light from the surface of 
a superconductor. The distribution with angle and frequency of the scattered light and the 
absolute magnitude of the effect are found. 

THE most interesting and important properties of 
superconductors consist of the special aspects of 
their behavior in an electromagnetic field. In par
ticular, high-frequency impedance measurements 
provide the possibility of explaining directly the 
characteristic features of the electronic energy 
spectrum of superconductors. The presence of an 
energy gap A in this spectrum leads to the absence 
of absorption (at T = 0) of radiation having a fre
quency less than the threshold frequency, equal to 
2A. 

In addition to these experiments, which involve 
measurements at various frequencies, Khalkin and 
Bykov1 made an attempt to investigate the electron 
spectrum using the Raman scattering of light in 
superconductors. The distribution of frequencies 
of the satellites, given sufficient intensity, might 
be measured by spectroscopic methods. The 
fundamental difficulty with this experiment lies in 
the extremely small amount of scattering. To a 
significant degree, this is associated with the fact 
that the skin effect, enables the light to penetrate 
only into a very thin surface layer of the metal, of 
the order of 10-5 em. In Khalkin and Bykov' s ex
periments, no satellites were found. 

The question naturally arises: what increase in 
sensitivity is required for the successful perform
ance of such an experiment, and what overall pat
tern is to be expected for the phenomenon? The 
present calculation was undertaken with this as its 
object. 

Our goal is to derive the distribution with fre
quency and angle of the light reflected from the 
plane surface of a superconductor filling the semi
infinite volume z > 0. For simplicity, we shall as
sume T = 0, and limit ourselves to the case in 
which the incident and reflected waves do not make 
too large angles with the normal to the surface 
( sin2 e, sin2 e' « I E I. where € is the complex 
dielectric constant); the latter limitation is 

of small significance in practice, since IE I ~ 10 
for the majority of metals in the frequency range 
of interest to us. We shall assume that the fre
quency of the radiation falls in the optical region. 

1. Let the incident wave be characterized by a 
vector potential 

A (z, y) :-= A0 exp (ikozZ + ikouY- iwt) +com pl. conj. 
The field which this wave generates in the metal 
we shall designate by A2• Under the influence of 
this field, the system of electrons can undergo a 
transition with the emission of a quantum A2 (out
side the metal there arises as a result a field AO. 
corresponding to a quantum having frequency w', 
direction in the interval dSJ~ and a given polariza
tion). 

Let us introduce a reflection coefficient da, 
which we shall define as the fraction of the energy 
falling onto the surface of the superconductor (the 
latter, it is clear, is equal to < 21r > -t et I Ao 12 w2 

x cos e, where e; is the area of the surface and t 
is time), which is reflected into the range of 
angles of dSJ' and frequencies dw'. * 

Rather than solve this problem, it is simpler to 
find the probability of a transition of our system 
with absorption of a quantum w'. In accordance 
with the principle of detailed balancing, 2 if the quan
tity 

dV? = s+ (w', Q') Vw' 2dw'dQ' I (2n)3 

represents the desired probability for the transi
tion of the system (with V the normalization vol
ume), then the probability for absorption of the 
quantum is B-(w', SJ') = B+(w', s:l'). The energy of 
the emitted quantum must not exceed the excitation 
energy of the system; i.e., in the present case, 
w- w' > 0. 

Normalizing the amplitude of the secondary field 
outside the metal with the aid of the relation 
(27T)-1 IA'0 I2 w' 2V= w', we obtain 

*Here and in what follows n = c = 1. 
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dcr = w'dW (2n:)2 [B- (w', Q') 1 151] w'"dQ'dw' 

(1/2n:)eiA~w2 cos 8 = I A0 12 lA~ 12 cos ew2 (2rt:)3 

(1) 
In the quantum field theory technique the quan

tity B-( w', Q') can be determined from the rela-
tion 

B-(w'Q') = ~ /Sio/ 2 , 

j 

where Sj0 is the scattering matrix element cor
responding to a transition from the ground state to 
the state j, and the summation proceeds over all 
possible states attainable by absorption of a quan
tum. The problem is thus reduced to the calcula
tion of the elements of the S-matrix for electrons 
in an external field A2 + A2, bilinear relative to 
A 2 and A2. 

In order to find the relation between A2 and A2 
and the corresponding fields outside the metal, one 
can make use of expressions obtained from the 
theory of the normal skin effect in a normal metal, 
since in accordance with our assumption the fre
quency of the light lies in the optical region. (Since 
w » .6., the distinction between normal and super
conducting metals is not significant here, while in 
the optical frequency range the skin-effect in a 
normal metal is normal. ) 

2. We shall find the elements of the S-matrix 
in which we are interested by using a quantum 
field-theoretical technique developed for applica
tion to superconductors by Gor'kov.3 The quantity 
.6. entering into the equations for the functions G 
and F clearly depends on the external field. To 
take proper account of the corresponding effects it 
will be more convenient for us not to write down 
the equations for the functions G and F, but rather 
to investigate the various Feynman diagrams for 
normal electrons having the interaction Hamilton
ian: 

Ht = iejm) [A.(x) + A~ (x)] (Vx- Vx•) 'I!J+ (x') 'liJ (x) /x'-+xj 

+ (e2jm) A2 (x) A~ (x} 'I!J+ (x) 'liJ (x) 

+ t g'IIJ+ (x) ('I!J+ (x) 'liJ (x)) 'liJ (x), 

i.e., incorporating the four-fermion interaction 
that leads to superconductivity. 

We shall introduce, as was also done in the 
paper by Abrikosov and Gor'kov,4 graphical repre
sentations for the functions G, F+ and F (Fig. 1). 
As stated above, we are interested in S matrices 
bilinear in A2 and A2. The simplest Feynman 
diagrams are represented in Fig. 2. The effect of 
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FIG. 2 

the magnetic field upon .6. is manifested in the fact 
that along with the simple diagrams of Fig. 2 there 
appear the more complex diagrams represented in 
Fig. 3. 

a b c 

FIG. 3 

Let us evaluate all diagrams of the types set 
forth. We shall demonstrate first that of all the 
diagrams in Fig. 2, only the diagram 2a is effec
tive. The small contribution of diagrams of the 
types 2d and 2e follows directly from the form of 
the function F ( p ):3 

F (p) = i!1J(e 2 - £2 -/1 2 + io). 

Since the frequency of the light w » .6., we have 
F ( p + k) ~ .6./ w2• Taking into account the fact that 
each peak with a single potential is proportional to 

(ejm) pA ~ (ejm) p0A, 

it is not difficult to see that the ratio of these dia
grams to the diagram 2a is of the order of 
b.p~ I w2m « 1. 

It is possible in similar fashion to demonstrate 
that the summed contribution of the diagrams in 
Figs. 2b and 2c is also small. Actually, when 
summed these diagrams are proportional to 

G (p + k) + G (p- k) = ljw- ljw'. 

In what follows we shall be interested principally 
in frequency changes of order .6., and, in any case, 
small by comparison with the fundamental fre
quency. In view of this, the summed contribution 
of b and c has the relative order of magnitude 
( w - w' )/ w « 1. 

For the same reason, diagrams of the type 3b 
are small by comparison with diagrams 3a. Dia
grams 3c can be eliminated if a transverse gauge 
is chosen for both fields; i.e., k · A 2 = k' · A2 = 0. 
This develops quite analogously to what occurs in 
the derivation of the equations for the electrody
namics of superconductors, since the transverse 
gauge of the vector potential makes it possible to 
omit consideration of the variation of .6. with the 
field. Let us, indeed, consider a loop with a single 
electromagnetic vertex. This is proportional to 
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J G ( p) G ( p + k) ( p ·A) d4p, or to a similar expres
sion containing F functions instead of G' s. From 
symmetry considerations it is clear that this inte
gral will be proportional to k ·A= 0. 

Let us now investigate in more detail diagrams 
of the type 3a. Each of these diagrams will be 
large only for the case in which the order of the 
small constant g will be compensated for by a 
large value for the integrals arising from the loop. 
It is not difficult to see that the largest integral 
will be that having two parallel G lines (Fig. 4), 
which will be of order ln ( wn I 1J), where 
1J = max ( w - w', A, vI k - k' I ), and wn is the 
Debye frequency. In view of the fact that 
g ln ( wn I A) ~ 1, it is clear that all of the dia
grams in Fig. 3a will be equally effective. 

At this point, however, it is necessary to make 
a reservation. In each of the diagrams 3a there 
must be at least one loop which does not yield a 
logarithmic integral. This is the loop with the 
electromagnetic vertex. In view of the fact that at 
this vertex the electron arrows must be directed 
to one side (the combination lj!+lj! enters into the 
Hamiltonian), the corresponding loop cannot have 
the same form as in Fig. 4. More precise analysis 
shows that diagrams of the type 3a are significant 
only in the most immediate vicinity of the "thresh
old" value w- w' = 2b. (cf. below); over the whole 
range w - w' - 2b. ~ A, they may be neglected. 
Below, we shall consider this particular case. 
Changes which arise in the neighborhood of the 
threshold point will be indicated in the discussion 
of the final result. 

3. We are thus left with only one diagram il
lustrated in Fig. 3a. The corresponding element 
of the S matrix has the form 

Sio = - i ~ < j I (e2 / m) (A2 (x) A~ (x)) '1\J~ (x) '1\Ja (x) I 0) d4X. 

Inasmuch as we are not interested in the final state 
of the electronic system, we shall find the summed 
probability for all probable processes (for the 
given fields), which is proportional to 

~I Sio 12 =-~ ~: ~(A; (x') A~ (x')) (A2 (x) A~ (x)) 
I 

The mean over the ground state of the four lj! 
operators, which enters into Eq. (2), may be re-

duced to the sum of the products of pairs of lj! op
erators: 

<'llJ! (x) '1\Ja (x) '1\Jt (x) '1\Jil (x))= ('1\J~ (x) '1\Jil (x)) ('1\Ja (x') '1\J~ (x)) 

- ('1\J: (x) '1\Jt (x)) ('1\J .. (x') '1\Jil (x)) 

(means of the type <lf!~ (x') l/! 01 (x') > = N can be 
neglected, since they do not depend upon the coor
dinate, and yield zeros when substituted into (2). 

The expressions entering here may be found by 
the same method as the functions G and F in 
Gor'kov' s theory. 3 For an infinite superconductor 
we find 

+ ' i 2.o. ( ) i (x-x') d4p ('1\Ja (x) '1\Jil (x)) = l'lar> J Vpu e + Bp e P (Zn)s , 

' + (' 2 .o. ) ip(x'-x) d4p ('1\Ja (x) '1\JiJ (x)) = l'l .. il j Upu (e- Bp e (Zn)s , 

' \ " ( ) ip(x'-x) d4P ('1\J .. (x) '1\J/3 (x)) = - I a(j ~ UpVpU e- Bp e (2n)3 ' 

+ , + I (' " ( ' ) ip(x-x') d4p ('1\J .. (x) '1\JiJ (x)) = ail .l UpVpu e -r- Bp e (Zn)s (3) 

Here 

p = (e, p), ~P = V (I P 1- Po), 

I01 [3 is a unitary antisymmetric two-row matrix. 
In the present case we are dealing with a super

conducting half-space. For this the expressions 
for the means of the operator pairs differ from the 
corresponding functions for an infinite space.* At 
the surface, the correlation functions must satisfy 
the appropriate boundary conditions. We shall 
limit ourselves here to the case of specular reflec
tion of the electrons from the boundary. In this 
case the correlation functions fall to zero for z = 0 
or z' = 0. 

In place of the functions (3), it is sufficient in 
this case to take the differences q, ( z - z' ) 
- q, ( z + z' ), which satisfy the same equations as 
the functions (3), as well as the necessary boundary 
conditions. Upon substitution into (2) we find that, 
with an accuracy up to insignificant corrections of 
order a/A., where a is the inter-atomic distance 
and A. is the wavelength of the light, the problem 
reduces to that for an infinite superconductor. For 
this, the potentials A2, A2 must be extended sym
metrically into the region z < 0, while the factor 
% appears before the integral in (2). 

Substituting the expressions (3) into the integral 
in (2) we obtain 

*Strictly speaking, this applies also to the evaluations of 
the various diagrams carried out above; it can, however, be 
shown that all results remain correct in the presence of a sur
face. 
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L;/ Sio / 2 = 2~2 ~(A; (x') A*~(x')) (A 2 (x) A~ (x)) ei(p-p')(x-x') 

I 

X __.!__ ! 1- ~P~P' + ~) 6 (a+ Bp) 6 (a'- Bp•) (Zd•p)" 
2 \ e 0 ep' epep' n 

d4p' 4 4 , e4 • 

X (Zn)" d xd X = zm• t@S~R(qz)f(q)dqz, (4) 

where t represents time; the functions f ( q) and 
R ( qz ) have the form 

1 \ d3p ) ( ~p~p+q ~· ) f (q) = 2 J (2n)3 {) (qo- 8P- Bp+q I- epe P+q + epep+q ' 

(5) 

R (qz) = j[A.A~ (qz)l i2 (6) 

The symbol [ A~2 ( qz)] represents the Fourier 
component of the product A2 ( x ) · A2 ( x,: i.e., 

A2 (x) A~ (x) = ~ [A 2A~ (qz)] eiqx dqz / 2:n:. 

The projections of the vector q, with the excep
tion of qz, are equal to the corresponding differ
ences in momentum and frequency between the 
incident and reflected quanta: ~ = kox - kOx• qy 
= koy - kQy. q0 = w - w'. 

4. Let us compute first the function f ( q). In view 
of the fact that Ep > 2~, the integral in (5) is differ
ent from zero only for q0 > 2~. This was to be ex
pected, for q0 = w - w' is the energy transferred 
to the electronic system, which cannot be less 
than ~. The integral (5) is fundamentally depend
ent upon the relation between v I q I and ~· For 
the case v I q I » q0 the integral over d3p 
= ( 2rrp6fv) d~d cos e may be replaced by 

2 00 co 

2npo \' d£ \ d£' 
v' I q I .\ J (£ = £ (q), £' = s (p + q)). 

-00 -oo 

Terms in H' in the expression under the integral 
sign vanish. After this we proceed to integration 
over dE and dE'. 

As a result of all these simple operations we 
obtain 

f ( q) = n•:•~J q I [ ( ~ + L'1) E ( ~: ~ ;~ ) 
qo~ K. ( qo -- 2~ )] (7) 

- qo I 2 + ~ qo + 2~ ' 

where E and K are complete elliptic integrals. 
In accordance with (4) and (6), the function f ( q) 

is unique and depends on ~- At the transition to 
the normal metal, therefore, only this function 
changes. As ~- 0 we find 

fn (q) = p~qo/ 2nV I q [. (8) 

In what follows we shall see that the presence 
of the factor 1/ I q I in f ( q) leads to the appear
ance of a large logarithmic integral over qz. If 
q0 - 2~ ~ ~. then in the region vI q I « q0 the in-

tegral (5) does not depend upon I q 1. Therefore, 
the region v I q I » q0 is the principal region of in
tegration over qz. 

In the close vicinity of q0 = 2~ a special situa
tion arises. Analysis of Eq. (5) shows that the 
range of values of v I p I for which the integral in 
(5) is proportional to 1/l q I is determined by the in
equality vI q I :::: .Jqij - ~2. At the same time, how
ever, as has already been mentioned above, all the 
diagrams 3a assume significance in the vicinity of 
qo = 2~. 

Analysis of these diagrams, which, is too cum
bersome to carry our here, shows that the lower 
limit of the logarithmic integration over qz never 
falls below ~. while in the immediate vicinity of 
q0 = 2~ this limit increases; this leads in the end 
to the elimination of the logarithmic integral, and 
then to the reduction of the whole effect to zero. 
In view of all that has been said, we can right up to 
the extremely close vicinity of the point q0 = 2~. 
make use of formula (7), and consider vI q I » qo. 

5. Let us now go on to the calculation of the 
function R ( q2 ). If we take yz as the plane of in
cidence, and if the field outside the metal is 

A (z, y) = A0 exp (ikozZ + ik0yy- iwt) +,com pl. conj., 

where koz = w cos e. and koy = w sin e. with e 
the angle of incidence, then within the metal the 
field will have the form 

A2 (z, y) = A2 exp (ik2zz + ik211y- iwt) +com pl. conj., 

where k 2y = koy• and k2z = w .J E - sin2 e ( E is the 
complex dielectric constant), while that value of 
the radical is chosen for which Im k2Z > 0. From 
Maxwell's equations and the boundary conditions at 
the surface it is possible to express A2 in terms 
of A0• It is necessary here to take account of the 
already-adopted condition k 2 • A2 = 0. 

a) If the incident wave is so polarized that the 
electric field is directed along the x axis, then the 
field will have the same orientation within the 
metal as well. In this case, the potentials are 
directed along the x axis, and the relation 

A 2cos9 A 
2x= Ve- sin2 9 +cos 6 o(x) 

(9a) 

holds. 
b) If in the incident wave the magnetic field is 

directed along the x axis, then the vector poten
tials A0 and A2 lie in the yz plane, and 

A _ 2 sin 9 cos 9 A 
2Z- O(yz) > 

e cos 8 + V e- sin2 8 

A 2 cos 9 Ve- sin" 9 A 
211=- O(yz)• 

ecos 8 + Ve-sin2 9 
(9b) 
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The index ( yz ) indicates that the vector A0 lies in 
the yz plane. The same formulas connect A2 with 
Ao. 

In what follows, we shall investigate those 
angles (} (and (}' ) for which the condition IE I 
» sin2 (} is fulfilled. In this event the expressions 
simplify; in particular, in case b) one may neglect 
A2z by comparison with A2y. 

The Fourier component of the product of the 
vector potentials for the specular case [ A2 ( z ) 
=A2 (- z)] is 

00 

[A2A~ (qz)l = ~ A2 (z) A~ (z) e- qzz dz 
-00 

'• 2i (k2z- k~:) 
= (A2A2 ) (k _ k'• )'- q2 

2Z 2Z Z 

We note that in carrying out the integration we 
shall select only those components of A2 ( x) and 
A2 (x) whose products have a time dependence 
exp { - i ( w - w' ) t} (the remaining terms are of 
no interest, in view of the presence of the o func
tion in (5) and the condition w - w' > 0 ). The dif
ference k2Z - k2~ appearing in this expression is 
equal to 2iwK, K = Im ..[€, as a consequence of the 
inequalities sin2 e, sin2 (}'« lEI. 

Substituting all of the terms of the function 
R ( qz) and carrying out a summation over the po
larizations of the scattered, and averaging over 
those of the incident, light, we obtain 

R (qz) = 8J Ao 12 \ A~ \2 cos2 B cos2 e' 
{ cos• q:> 

sin• q:> 

+ [(n cos 8+1)'+x2 cos2 Bl [(n +cos 6')2+x'] 
sin2 q:> 

+ ((n +cos 8)2 + x•] [(n cos B' + 1)2 + X2 cos2 6'] 

cos2 q:> } 
+ [(n cos B + 1)2 + x2 cos2 8] [(n cos B' + 1)2 + x2 cos2 B'] 

16 x2ro2 
X ---::-:-;;---;;--;; (10) 

(q; + 4x2w2)2 -

Here we have used the symbols: ..fE = n + iK, and 
cp, the angle between the planes of incidence and 
reflection. Thus, the function R ( qz) is equal to 
a constant for qz « 2Kw, and falls off rapidly for 
qz » 2KW. 

6. Let us now substitute (7) and (10) into (4). 
Taking 2Kw » q0 jv, we arrive at the conclusion 
that the principal contribution to ~I Sjo 12 is pro-

J 
vided by the logarithmic integral over qz, in the 
region delimited by the inequalities I q I » qo /v 
and I qz I « 2KW. In view of the fact that I qy I 
< w- w' « q0 /v we may, with logarithmic accu
racy, write the result of the integration over qz 
in the form 

(the coefficient 2 results from integration over 
negative and positive qz ). 

Substituting (7), (10), and (4) into (1), with at
tention to the fact that w - w' « w, we obtain the 
final expression for da for the case w - w' > ~: 

de; = 2e4 cos B c?s• 8'{[(1 + cos2 B) (n2 + x2 + 1) + 4n cos B] 
:rt3 x2w" 

x [(I + cos2 B') (n2 + x 2 + I)+ 4n cos B'] 

+ sin2 B sin2 B' cos 2<p (n2 + x2 -1 )2} 

x { [(n cos B + 1)2 + x 2 cos2 8] [(ncos8' + 1)2 

+ x2 cos2 8'] [(n +cos 8)2 + x2] 

x [(n +cos 8')2 + x2Jrl [ ( w-;- w' + i\) E (: = :: ~ ;!) 
_ 2 (w- w') ~ K (w- w'- 2~)] In 2xwv, dw'dQ. 

(j)-(j)' +2~ (j)- (j)' + 2~ (j)-(J) 
(11) 

The expression for da for a normal metal is ob
tained by substituting ( w - w' )/2 for the square 
brackets containing the elliptic integrals E and K. 

We note that the ratio of da to dan, for the 
same metal in the normal state, is a universal 
function of the ratio ( w - w' )/2~. specifically: 

(de;- don) I don= <p ((ro-ro')l2t\), 

<p (x) = ( 1 + +) E (; ~ ~ ) - x ~ 1 K C ~ ! ) - 1. (12) 

A graph of the function cp ( x) is presented in Fig. 5. 
It is evident from this fugure that only in the region 
w - w' < 4A is there an intrinsic difference between 
the normal and superconducting metal. 

The formula obtained is formally applicable over 
the whole range of frequencies for which 
ln (Kwv/1 w- w' I) is sufficiently large; i.e., for 
w - w' « K wv / c (in the usual units ) . In reality, 
however, it is necessary to consider that treatment 
of the electrons as free is valid only for energies 
E « wn ( wn is the Debye frequency). For E"' wn 
there arises a strong attenuation of the electronic 
excitations, due to emission of phonons. This im
poses the limitation w - w' « wn, which more or 
less coincides with the preceding in the optical re
gion. On the low-frequency side, as has already 
been stated, Eq. (11) becomes invalid in the region 
w - w' - ~ « ~. While this formula yields a finite 

rp(.r) 
O,G 

2 3 
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value at w = 2A, correct consideration of the 
graphs 3a gives at this point da = 0. In view of its 
narrow width, however, this region is not of great 
interest. For the case of a normal metal the ap
plicability of the derived formula is limited only 
in the direction of large values of w - w'. 

The absolute magnitude of the effect depends to 
a large degree upon the quantities K and n. The 
data available on K and n for certain metals5 at 
A. = 5800 A and T = 300° K is presented below: 

n 
X 

V Nb 

3.03 1.80 
3.51 3.11 

Ta Sn Pb 

2.05 1.48 2.01 
2.31 5.25 3:48 

At low temperatures K changes little, while n 
decreases slightly. For Nb at A.:::; 5800 A ( w 
= 3.2 X 1015 Sec-1 ), and 8 = 8' = 0: 

da = 0.6·!0-12~d.Qdw'j2~. (13) 

The quantity {3 in (13) is of order unity; its de
pendence upon ( w - w' )/2A is illustrated in Fig. 
6. The dashed line represents this same quantity 
for the normal state. 

It follows from evaluation of (13) that for detec
tion of the effect the sensitivity must be at least 
105 times as high as in the experiment of Khalkin 
and Bykov. 1 

In conclusion, the authors express their grati
tude to Academician L. D. Landau and to M. S. 
Khalkin for their consideration of the results of 
this work. 
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