
SOVIET PHYSICS JETP VOLUME 13, NUMBER 1 JULY, 1961 

CONTRIBUTION TO THE THEORY OF MAGNETOACOUSTIC RESONANCE IN METALS 

E. A. KANER, V. G. PESCHANSKII, and I. A. PRIVOROTSKII 

Institute of Radiophysics and Electronics, Academy of Sciences, Ukr. S.S.R., and Khar'kov 
State University 

Submitted to JETP editor July 9, 1960 

J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 214-226 (January, 1961) 

A new effect of resonance absorption of ultrasonic waves in a magnetic field is studied 
theoretically.* In many respects the resonance mechanism is similar to cyclotron resonance, 
but is related to the spatial rather than temporal periodicity of the field in the metal. The 
calculations are performed for closed as well as for open electron trajectories. The posi
tions, widths, and heights of the resonance peaks are determined as a function of the fre
quency, magnetic field, Fermi surface structure, magnetic field orientation and direction of 
propagation of the sound relative to the crystallographic axes. A sharp angular dependence 
of the absorption coefficient has been detected. An investigation of the effects under consid
eration may yield information on the topology and a number of other important characteristics 
of Fermi surfaces in metals. The results of the experiments are in good agreement with the 
predictions of the theory. 

1. MECHANISM OF RESONANCE ABSORPTION 

SouND oscillations produce in a metal a 
spatially-periodic field. In the presence of a 
magnetic field H(O, 0, H), this periodicity leads 
to a non-monotonic dependence of the coefficient 
of ultrasound absorption a on H. This effect was 
first explained by Pippard, 1 who determined the 
period of the oscillations of 0! from qualitative 
considerations. 

V. Gurevich2 developed the theory of this 
phenomenon for closed Fermi surfaces and 
showed that the periodic variation of a as a 
function of Ir1 can be of two kinds, namely 
harmonic oscillations (which we shall call non
resonant) and smooth increments that occur 
periodically. These periodic variations of a with 
Ir1 have no resonant character in the sense that 
the relative widths and the forms of the absorption 
'lines' remain practically unchanged as the mean 
free path l tends to infinity. 

In the present paper we consider an essentially 
new effect of resonance absorption of ultrasound 
in metals. The mechanism of this magnetoacoustic 
resonance is analogous in many respects to the 
mechanism of cyclotron resonance in metals, 2 but 
is connected not with the temporal but with the 
spatial periodicity of the field in the metal. The 
magnetoacoustic resonance should take place when 

*A preliminary report on this phenomenon was published 
earlier. 11 

the average value (over the period T of the mo
tion in the magnetic field) of the electron velocity 
along the wave vector k differs from zero. For 
closed trajectories this can be realized only when 
k is not perpendicular to H. On the open periodic 
trajectories, resonance should be observed also 
when k 1 H, provided the vector k is not parallel 
to the direction of the open trajectory. 

If the condition k · VT ~ 21lll is satisfied [ n = 1, 
2, 3 ... is an integer, and the bar denotes averaging 
over the period of the trajectory pz = const on the 
Fermi surface E ( p) = J.L 0 ], the electron is periodi
cally accelerated by the field in the equal-phase 
planes, where it remains for a relatively longer 
time than in the remaining parts of the trajectory. 
Clearly, the longer the mean free path, the more 
effective will be the interaction between the elec
tron and the field in these planes. 

The dependence of k · VT on pz is, however, 
quite appreciable. If k · VT is independent of Pz, 
then the condition k · VT = 21rn will be satisfied 
simultaneously for all electrons. This is precisely 
the case realized on open periodic trajectories, 
when k 1 H and the angle e between k and the 
direction of the open trajectory is not small, so 
that k · vT ~ kr sin e » 1. Here the resonance 
effect will be greater than in the case when k · VT 
depends appreciably on pz. The dependence on pz 
leads to a smearing and reduction in the height of 
the resonance maximum. It is obvious that the 
electrons for which k · VT has an extremum with 
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respect to pz will be relatively more numerous 
than the other electrons, and therefore the ampli
tude of resonant absorption will be a maximum 
precisely for such "extremal" electrons, although 
its magnitude will be still less than when k · VT 
= const. 

We emphasize that Gurevich2 did in fact not 
consider this effect. 

Along with magnetoacoustic resonance, the ab
sorption coefficient should be highly anisotropic 
when the vectors k and H become slightly non
perpendicular, and also when the vector k deviates 
slightly from the direction of the open periodic tra
jectory. The reason for this anisotropy is that 
when k · v = 0 all the electrons fall periodically 
into the equal-phase plane and participate effec
tively in the absorption, whereas the absorption 
when k · v ~ 0 is essentially determined only by 
the electrons that drift most slowly along k. This 
circumstance brings about a fast reduction in a. 

The strong angular dependence of the absorption 
when k 1 H, and the presence of magnetoacoustic 
resonance in this case, are closely linked with the 
presence of open trajectories, and do not take 
place in metals with closed Fermi surfaces. 

2. GENERAL FORMULA FOR THE ABSORPTION 
COEFFICIENT 

Let us turn to a quantitative examination of the 
problem. As was shown by Gurevich2 and Akhiezer, 
Kaganov, and Lyubarskil, 4 the coefficient of absorp
tion a is connected with the rate of dissipation of 
energy Q by the relation 

a=Q/W, (2.1) 

where Q is the dissipation function, xo ( E - f.J.o) 
is a small non-equilibrium addition to the Fermi 
distribution function f0, v ( p) is the collision 
frequency [ v = tQ1 where t0 (p) is the time be
tween collisions], dTp = dpxdPydPz = eHc-1dEdtdpz 
is an element of momentum space, E (p) is the 
energy, v = 8E/ap is the velocity, t the time of 
motion along the orbit, - e is the charge, f.J.o is 
the electron end-point energy, h is Planck's con
stant, and c is the velocity of light. 

The time t is determined by the equation of 
motion of the electron in a magnetic field 5 

dpjdt = - (ejc) [vH]. (2.2)* 

The quantity W is the energy density in the sound 
wave 

(2.3) 

*[vH] = vxH. 

where p is the density of the metal, w = ks is the 
frequency, s is the speed, A. = 27T /k is the wave
length of sound, and u ( r, t) = u0 exp ( iwt - ik · r) 
is the displacement vector. The definition (2 .1) of 
the absorption coefficient is certainly valid for w 
« v, which is assumed to be satisfied. 

The solution of the linearized kinetic equation 
for the function x has the form2•6 

t t, 

x= ~dtlg(ti)exp[~<v-ikv)dt']; (2.4) 
-00 t 

U;r, = 2-1 (iJut/()Xk + iJukjiJX;), 

eE' = eE- (e/c) [uHJ- \7 <"-th> Utk· (2.5) 

Here A.ik (p) is the deformation potential, 
which determines the variation of the dispersion 
law in the field of the acoustic wave: OE = A.ikUik, 
where Uik is the deformation tensor. In order of 
magnitude we have I Aik I ~ I Aik I ~ f.l.o· The quan
tity <OE > = <A.ik > Uik represents the change in 
the chemical potential of the electrons in the field 
of the sound wave. The small terms connected with 
the Stewart-Tolman effect and the change in the 
temperature can be neglected. 4 

The electric fields induced by the ultrasound 
should be determined from Maxwell's equations 
(the field components transverse to the wave 
vector) and from the conditions for the elec
troneutrality of the metal, j · k = 0. For this pur
pose it is necessary to calculate the current 
density 

j = -2eh-3 ~ d-rpvxl\ (e- fl0). 

We shall not deal, however, with the determi
nation of the electric fields, since it can be shown 
(see reference 2) that in the range of the values 
of H concerned here the field make the same (or 
smaller) contribution to the absorption as does 
the deformation potential, which in turn is known 
only in order of magnitude. These fields are con
tained in a only through the slowly varying func
tion g, the form of which does not influence 
essentially the features of the investigated 
effects. 

Substituting the expression for x in the dissi
pative function and integrating by parts, we 
readily obtain 

a= h-aw-1 Re ~d-rpg*xl\ (e- fl0), (2.6) 

where g* is the complex conjugate of g. 
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Magnetoacoustic resonance takes place when 
the trajectories of the electrons in momentum 
space are periodic in t. The motion on the closed 
trajectories is always periodic. Periodic open 
trajectories occur on open Fermi surfaces when 
the vector H lies in the crstallographic plane. 5-1 

Let us calculate the coefficient of absorption 
for the case when Tv « 1, and max { kvT} » 1. 
This system of inequalities is equivalent to 

(2. 7) 

We can therefore calculate a by the method of 
stationary phase. It is readily seen that the sta
tionary phase points in the integrals with respect 
to t form a line of points k · v (t, pz) = 0 on the 
Fermi surface. Simple calculation leads to 

~~ 

x exp [ ~ (v- iq) dt ] ; (2.8) 
Ia 

00 

Ja = ~ d-rexp [-~iq~-r2 - ~iq:-r3]. (2.9) 
-oo 

Here q = k · v, the points ta ( Pz ) are all the solu
tions of the equations q (ta. Pz) = 0, q~ 
= dq (ta )/dt, q(}: = d2q (ta)/dt2, and ga = g (ta). 
The summation with respect to ta is over all the 
ta in the interval ( 0, T ), while the sum with re
spect to t13 denotes summation over all the roots 
t13 :::: ta, while the first term of the sum, t13 = ta. 
should be multiplied by 1;2, a fact designated by 
the prime. Integration with respect to pz is over 
those values of pz for which solutions of the equa
tions q ( t, pz) = 0 exist. 

We have retained two terms in the exponent of 
formula (2.9) for Ja, for q& (pz) can vanish in 
certain important cases (see Sec. 3, item B). 
The term with q(}: can be neglected if I q~ 13 

» I q(}: 12• In this case 

Ja = (2nf\ q~ \)'1'exp (-T nisa), 

In the opposite limiting case 

J a = (6/ I q: \)'1' r (1/a) 3-'1'. (2.11) 

Equation (2. 8) can be transformed to 

ct=ct0 +ct1, ct0 =(eHj2h3Wc)~dpz ~ jgaJa\2,(2.12) 
O<la<T 

ct1 = (eHjhaWc) Re ~ dpz [l- exp (2ni~- 2nr)r1 

~~ 

X ~ g:Ja ~ g~J~exp [~ (v-iq)dt]. (2.13) 
O<la<T O<la-tll<:T ta 

Here 27T(y- i/3) = T (17- iq). The bar denotes 
averaging over the period T: 

T 
- t I 'II'= r j'll'dt. 

Contributions to OQ are obviously made by all 
values of Pz· It is therefore easy to show, by 
using the expression (2.10) for Ja, that a 0 coin
cides with the absorption coefficient for H = 0, 
obtained by Akhiezer et al. 4: 

a0 = nh-3W-1 ~d-rpjg\2 b(e-f.t0)b(kv)~Nf10Wjpsv, (2.14) 

where N is the density of the electrons in the 
metal. 

The resonance effects, like the sharp anisot
ropy of the absorption, are due to the presence 
of the resonance factor B ( Pz) = [ 1 - exp ( 21Ti{3 
-27Ty)r1• 

3. RESONANT ABSORPTION OF ULTRASOUND 
ON CLOSED TRAJECTORIES 

Let us consider magnetoacoustic resonance on 
closed trajectories, for which Vx = vy = 0 and Vz 
;r. 0. When kz ;r. 0 the function B (Pz) has a series 
of peaked maxima. For fixed values of the mag
netic field and of the frequency, these maxima cor
respond to values Pz = Pzn for which {3 ( Pzn) 
= kzvzT/27T = n (n is an arbitrary integer or zero). 

The values of Pzn do not occur, generally 
speaking, when {3 (Pz) has extrema. However, if 
Hand ware such thatatsome value of n the condi
tion {3 ( pz ) = n is satisfied for a value of {3 ( pz) 
which is extremal with respect to pz, then the 
maximum of B ( Pz) will be considerably broader 
than the others, and its contribution to the integral 
will be greater. Let us show that this maximum 
leads to resonance oscillations, and not merely to 
increments in the absorption coefficient, as stated 
by Gurevich. 2 These increments, as will be made 
clear in what follows, pertain to the edges of the 
resonance line and describe its asymmetry. 

A. The absorption near the extremum points 
Ps of the function {3 ( Pz ) has the form 

X (2n:il'l+:ti~" (Pz-Ps) 2 -2;-ty)}, 

where 

(3.1) 

L'l =~ext- n, 
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and the small quantities v ( t13 - ta) have been 
neglected. 

Expanding the exponential in a series and inte
grating, we obtain 

The values of all the functions are taken at Pz 
=ps, and a= 113"1/{3''. 

Using (2.10), we obtain the following estimate 
for the height of the n-th maximum: 

rhn~r:t0 (kryf'1' ~w'1'Hnv-1 • (3.3) 

The relative width of the n-th maximum is ~n ~ 'Y 
or, expressed in terms of the magnetic field, 
~ H/Hn ~ ( kl r 1, is independent of n and is deter
mined by the range. The greater l, the narrower 
the maximum and the higher the peak. Figure 1 
shows schematically the dependence of the reso
nant absorption on H. With increasing n, the am
plitude at the maximum decreases as n-1, i.e., 
varies linearly with the field ( Hn ~ H1n- 1 ). 

d(H) 
l 
I 
I 

I , H 

FIG. 1. Approximate 
course of resonant ab
sorption vs. magnetic 
field for {3" < 0. 

The form of any individual resonance line is de
termined by the factor M. Its maximum, of value 
33142-Ly-112, is reached when~ =- 3-112y-112, i.e., 
is shifted somewhat with respect to ~ = 0. 

The sharp jumps in the absorption coefficient, 
referred to by Gurevich, 2 pertain in this case 
actually to the edges of the resonance lines, and 
correspond to the limiting case I~ I » y of the 
general formula (3.2). These jumps describe the 
asymmetry of the resonance lines away from 
resonances when a~ > 0 we have M ~ y I~ l-312 

and when a~ < 0 the value of M is on the order of 
I~ 1-112 and is I~ I /y » 1 times greater than when 
a~> 0. 

In evaluating the integral (3.1) near resonance 
we have assumed that the numerator, which con
tains the rapidly oscillating function exp { iAa ( Pz) }, 
varies slowly over the interval OPz ~ Ps ( kl )-l/2. 
This assumption is justified if an/a 0 ~ (kry)-1/2 

» 1, i.e., in the case of sharply pronounced reso
nance. In other words, sufficient sharpness of the 
resonance ensures the correctness of the limiting 

formula (3.3) If the inequality an » a 0 is not sa
tisfied sufficiently well, then the resonance maxima 
will be shifted somewhat and "diffuse." In principle 
it is possible to take this effect into account by de
termining more accurately the positions of the sta
tionary points in the integral with respect to pz. 

B. We proceed to estimate the contribution due 
to the limiting value Pz = Pz lim. The latter is 
that maximum (minimum) value of Pz on the 
closed Fermi surface (Fig. 2) for which a unique 
point k · v = 0 exists on the curve Pz = Pz lim• 
E (p) = 11-o· For the sake of simplicity we consider 
a convex surface E (p) = 11-o with a symmetry 
center. When I Pz I < I Pz lim I the electron tra
jectory has only two points ta (t1 < t2) at which 
k · v (t) = 0, and there are no such points at all 
when I Pz I > I Pz lim 1. The contribution from the 
limiting value must be estimated with caution, for 
when Pz = Pz lim we have qb! = 0 and expression 
(2.10) cannot be used for Ja. For small ~Pz 
= Pz lim - Pz we have qb! ~ I~Pz 1112• 

FIG. 2. Schematic form 
of electron trajectories and 
line k·v = const on closed 
convex surface e(p) = p... 

I 

~~zp 

The resonant part of the absorption coefficient 
can be written as 

eH \ I g1lt + g2J2 exp (- iA21l 12 
a = h"W c Re ~ dpz 1 - exp (2ni[3- 2nr) (3.4) 

We have neglected in the numerator the small 
quanti ties v ( t13 - ta ) , and replaced exp ( 2 1ri{3) 
by unity. 

Let us consider a case when f3{im ( d{J/dpz )lim 
¢ 0 and I ~I = lf3lim - n I « (211")-1• The relative 
width of the interval opz/Pz lim which makes an 
appreciable contribution to the integral is on the 
order of <1~1 + y) (kr)- 1• Here 

I q';jq:2 / ~ kr ( 6pz/ Pz lim )'1' ~I, 

and expression (2.11) must be used for Ja. 
In this case the function B (Pz) is "sharper" 

than exp (- iA2 1), since A2 1 (pz) = A2 -At 
changes over the interval opz ~ (kr)-~z lim· 
Recognizing that g 1J 1 = g2J 2 when Pz = Pz lim• 
we obtain for small I~ I and 'Y 

Oz 

. _ eH I g• I ( 6 \ '/'f2 (1/ ) { 1 ' 2:; t ~ } (3 5)* O!hm- 3h"Wc TifT WI) 3 In arc g r , . 
*arctg = tan-'. 
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where a= ((3' l/f3'him· The factor preceding the 
curly bracket is of the order of a 0 ( kr )-2/3. 
Formula (3.5) describe periodic increments in the 
absorption coefficient, viz. the value of the expres
sion in the curly brackets is 2 when ~ > 0 and 
I b. I » y, and is small ( ~ y/1 b. I) when ~ < 0. 

The plot of a vs. H, given by Eq. (3.5), has a 
sawtooth shape with the "tooth" height decreasing 
with decreasing field. The magnitude of each jump 
is 

A 2eHf2 ( 1/a) I g 126'1• (k )-'/, 'I•H'f, ua = 21 ~ <Xo r ~ (J) n • 
3h"W c I f3' II q" I" 

(3.6) 

The absorption increases with increasing H if (3' 
< 0 and with decreasing H if (3' > 0. On a closed 
convex Fermi surface, in particular, (3' > 0 and a 
acquires increments when the magnetic field is de
creased. 

The dependence of the derivative da /dH on H 
should display resonance peaks 

HdajdH ~ a0 (kr)'1•oyj(y2 + !:J.2), (3. 7) 

with an amplitude at the maximum amounting to 
(da/dH)max ~ a 0 (yH)-1 (kr) 1f3 and with a posi
tion determined by the condition f3lim = n. 

In the case of a quadratic dispersion law, as 
for any convex closed surface, (3' does not vanish 
anywhere, and the resonance oscillations take 
place on the da'/dH curve and are connected only 
with the limit point. 

For a non-convex Fermi surface, the limit 
point may coincide with the 'extremal' point at 
some inclination of the vector k relative to H, 
i.e., ffiim may vanish. In this case resonant 
oscillations can occur* when y ( kZ) 1/ 4 « 1: 

6'1•f2 (1/a) eH I g•l M (3.8) a lim = ------'-'-=-;,.,----'-"--cc,..-
3h3Wc I W' I';, I q" 1';, . 

Their amplitude is treater than in the case (3.3): 

The relative shape and width of the resonance 
curve is the same as in case A. 

C. Let us estimate the contribution to the ab
sorption from the points Pzn at which (3 ( Pzn) 
= n, and (3' (Pzn) ¢ 0. Near these points, when 
inequalities (2. 7) are satisfied, we have 

ReB (pz) = nb (~- n). (3.9) 

Consequently, the contribution of the points Pzn 
is given by the equation 

*When this inequality is satisfied, the "sharpest" is the 
function B(pz), and Eq, (2.11) must be used for ]a.. 

br:J. = ;e;c ~ ~ dpzb (~- n) I ~g<X I q~ r'1• 
n liPzn lex 

X exp (- niscx/4- iAcx)l 2 

I 
(3.10) 

Integration with respect to Pz is carried out in the 
vicinity of those points ( I Pzn I < I Pz lim I ) at 
which (3 (pz) = n, (3' ¢ 0, and q[x ¢ 0. 

It is seen from (3.10) that oa has no resonant 
character. The value of the non-oscillating part 
of oa is on the order of a 0, and the amplitudes of 
the individual oscillations are of the order of 
a 0 ( kr )-1 and less than the amplitude of the reso
nance or of the jumps in the absorption. When the 
number of terms in (3.10) is large, oa is an irreg
ular function of H, owing to the large number of 
oscillating components with periods and amplitudes 
of the same order of magnitude. 

Along with these singularities, the coefficient 
of absorption should also acquire smooth incre
ments, connected with the extremal values of Pz 
(with pz max on a closed convex surface), which 
were investigated by Gurevich. 2 

D. We investigate finally the sharp anisotropy 
of absorption when the vectors k and H deviate 
little from perpendicularity. We consider for 
simplicity trajectories on which k · v = 0 at two 
points. The absorption can be represented as a 
sum of a monotonic and an oscillating part: 

<Xmon= h-aw-1 ~ d-rpb (e- !lo) {) (kv) I g2 j y (y2 + ~2f1 , (3.11) 

<Xosc= eH (nch"Wt1 Re ~ dpzY (Y2 + ~2f1 g1g;J1J;iA", (3.12) 

where (3 = kz"VzT/27!", and kz = k sin cp. When cp 
= 0, f3 = 0 and O!mon ~ aoy-1, aosc """' O!mon ( kr )-1/2 
,..., a 0y- 1 (kr)-1f2. This case was investigated by 
Gurevich.2 When cp « (kl)-1 the average displace
ment of the electron in the direction of sound propa
gation is small (I f31 « y), and the absorption has 
the same form as when cp = 0. 

In the angle interval ( kZ )-1 « cp « ( kr )-1 the 
number of electrons with I f31 ;r;, y, and hence the 
absorption, is klcp times smaller than when cp = 0. 
In this case the formula for O!mon is obtained 
from (3.11) by making the substitution y ( y2 + (3 2 )-1 

- 7!"0 ((3): 

<Xmon= nh-aw-1 ~ d-r:p I g2 !6 (kv) 6 (~) 6 (e- !lo) ~ a0 (kr<pf1 • 

(3.13) 
The ratio of the "speeds" of the variations of 

(y + (32 )-1 and of exp ( iA2 t) in (3.12) is important 
for the estimate of O!osc· The oscillating factor 
near the central section, where A21 ( Pz ) has an 
extremum, changes appreciably in the interval op1 
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I 
I 
I 
I 
I __ -_-:-~--=---=;r,--__ _ 

______ ,.__ --"-.-·---

a b 

""Po (kr)-t/2, and (y + {32)-t changes over a dis
tance op2 "" Po ( klcp rt (Po is the characteristic 
momentum of the electron). OPt is proportional 
to the number of electrons for which I A2t (pz) 
- A2t ( 0) I ,$ 1, while op2 is proportional to the 
number of electrons with I {3 I :s y. When op2 
« op2 [i.e., cp « ( y /kl) t/2] application of the 
method of stationary phase yields O!osc 
~ a 0y-t ( kr) -t/2. The period of oscillation is the 
same when cp « 1 as when cp = 0, and coincides 
with the extremal diameter of the Fermi surface 
in the direction of k x H. In the opposite limiting 
case, op2 « OPt• we can replace y (y2 + [3 2 )-t by 

7rO ({3) and O!osc ~ O!mon ~ O!o (krcp)-t. 
Thus, the monotonic part of the absorption 

falls off at small cp much more rapidly than the 
oscillating part, and when ( y /kl) t/2 « cp « ( kr )-t 
the amplitude of the oscillations is comparable 
with the value of O!mon (remaining, naturally, 
smaller than the latter). With further increase in 
cp, the nonresonant oscillations are replaced by 
the resonant oscillations investigated above. The 
latter take place, generally speaking, for all cp 
~ ( kr )-1, and particularly also when cp 
= 1r/2 (k II H). However, resonance will occur for 
cp = 1r /2 only when the curve Vz = 0 is not plane 
and consequently does not coincide with the curve 
Vz = Pz = 0. If the two curves coincide (for 
example, in the case of quadratic dispersion), 
then the oscillations will take place only when 
l1r/2- cpl » (kr)-t. Near cp = 1r/2 (l1r/2- cpl 
< (kr)-t) the oscillations vanish, and a= a 0 il 
the range of fields under consideration. 

All the foregoing statements regarding closed 
surfaces holds true for closed trajectories on 
open Fermi surfaces. 

4. SINGULARITIES IN THE ABSORPTION OF 
ULTRASOUND ON OPEN PERIODIC 
TRAJECTORIES 

Most metals have open Fermi surfaces. 5•8•9 

When the vector H lies in the crystallographic 

c 

FIG. 3. Line k·v == 0 on a 
"corrugated cylinder" type of 
surface. a- e < e0 , b-e = e0 , 

c- e > eo (e0 is the maximum 
angle of inclination of the "cor-, 
rugation" to the cylinder axis). 

plane, the open trajectories are periodic. Since 
the electrons absorb sound most effectively when 
entering the equal-phase plane, an important role 
is played by the position of the lines k · v = 0 on 
the surface E (p) = J.Lo· Figure 3 shows the lines 
k · v = 0 on a surface of the "corrugated" 
cylinder of revolution type for different angles of 
inclination e of the vector k to the cylinder axis 
X. When e < eo (eo is the angle of inclination Of 
the "corrugation" to x at the parabolic point) 
two closed non-intersecting lines k · v = 0 
(Fig. 3a) exist in each cell of the reciprocal 
lattice. When (} = 80 they are in contact (Fig. 3b ), 
and when (} > (} 0 they go into two open periodic 
curves, which are symmetrical about the plane 
passing through k and x (Fig. 3c ). In the general 
case these lines are not planar, with the exception 
of (} = 0 and (} = 1r /2. 

For a planar network of "corrugated cylinders,"* 
when the vector k is parallel to the cylinder axis, 
the lines k · v = 0 represent an aggregate of closed 
and open periodic curves (Fig. 4a ). As the vector 
k is tilted away from the cylinder axis, the closed 
and open lines come closer and become tangent at 
a certain orientation of the vector k (Fig. 4b). 
Further deviation of the vector k causes the lines 
k· v = 0 to be closed (Fig. 4a). On the open tra
jectories we have Vx = 0 and lvyT I = cbx/eH, 
where bx is the period of the open trajectory in 
momentum space in the direction of x. 

On the closed trajectories we have vx = vy = 0. 
The limit between the open and closed trajectories 
is a self-intersecting curve passing through the 
saddle point, at which the effective mass and the 
period T become infinite logarithmically. 8 

If the vector k makes, with the direction x of 
the open periodic trajectory an angle much less 
than ( kl )-1, the expression for a has the same 
form as in the case of closed trajectories when k 
1 H (see reference 2 ) . The period of the oscilla-

*Such a surface is similar in its topological properties to 
the Fermi surface in tin. 10 
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FIG. 4. Lines k·v = 0 on a surface comprising a planar 
network of "corrugated cylinders," a) line 1-k directed along 
the 100 axis; 2- along the 001 axis; b) k in the (010) plane. 
The figure shows the instant of tangency between the open 
and closed lines k·v = 0. 

tions is determined by the extremal dimension of 
the open trajectory in the k x H direction (for a 
"corrugated cylinder" - by the height of the 
"corrugation" on the axial section). 

When the vector k deviates from the xz plane 
( H II z ), the open surface is equivalent to a closed 
non-convex surface, and the analysis given in 
Sec. 3 is fully applicable. 

When k 1 H, the contribution to absorption from 
the open trajectories diminishes rapidly as the 
vector k tilts away from the x direction, since 
the quantity I {3 I = ( kcbx/27reH) sin (} ( (} is the tilt 
angle) never vanishes for all the electrons on the 
unclosed trajectories. Consequently when ( kl )-1 

« (} « ( kr) -1, both the monotonic and the oscilla
ting parts of the absorption from the open trajec
tories are ( k[(} )2 times smaller than when (} = 0. * 

When (} » ( kr )-1, resonant oscillations are 
produced. Unlike the closed trajectories, resonant 
oscillations take place also when k 1 H. Since {3 
is independent of pz, it is possible near resonance 
to take Re B ( Pz ) ~ Yo [ 1r ( Y5 + 6 2 ) r 1 outside the 
integral sign in (2.13), and the absorption will have 
the form 

where Yo is the characteristic value of y ( pz ) . 
The integration in (4.1) is over the layer of open 
trajectories, on which there are points ta. It is 

*When the vector k makes with x an arbitrary small angle 
K [K » (kl)-1], then the period of the oscillations is determined 
by the extremal dimensions of the trajectories in the y direc
tion when K « (y/kl)'h, and by the dimensions of the trajecto• 
ries with {3(pz) = (T/21T)(kyvy + kzVz) = 0 when K » (y/kl)Y'. 
We note that even at small K these periods can differ greatly 
from each other. 

seen from (4.1) that at resonance O!n ~ a 0y01 and 
is comparable with the non-oscillating part of the 
absorption on the closed trajectories. In this case 
the resonance is "sharper" than on the closed 
trajectories with kz >"' 0, since the average dis
placement I Vy T I is the same for all the electrons 
and there is no additional averaging over pz. 

On these resonance oscillations are super
imposed oscillations of relatively small amplitude 
[ ~ a 0y01 ( kr )-112 ] from the central section (for (} 
< e0 in the case of a cylinder) with a period 6 W 1 

= I 21rec-1 ( kx6Py - ky6Px )0 I, and oscillations 
from the self-intersecting trajectory (saddle 
point) with two periods (the periods are different 
on the sides of the open and closed trajectories), 
and with an amplitude which is roughly (kr) 2 

times as small as the amplitude of the resonance 
oscillations. The phase of these last oscillations 
has a logarithmically slow dependence on the 
field.* 

The resonant oscillations vanish when k 1 H 
at an angle (}k of between the vector k and x 
such that the angle k · v = 0 shifts on the closed 
trajectories. In this case the analysis carried out 
in the preceding section is fully applicable. 

The amplitude of the resonance oscillations de
pends quite sharply on the angle cp between the 
vector k and the plane k 1 H. The results given 
above are valid when cp « ( kl) -1• In the region 
( kl )-1 « cp « ( kr )-1 the amplitude of the resonance 
has at the maximum an order of a 0 ( krcp) - 1 and is 
kl times as small as when cp = 0. In the angle 
interval (yo/kl) 112 « cp « (kr)-1, when (} < e, the 
amplitude of the resonant oscillations from the 
central section is comparable with the amplitude 
of the resonance, similar to what takes place on 
the closed trajectories (see Sec. 3, item D). In 
the region of angles cp » ( kr )-1, resonant oscilla
tions take place, along with periodic increments in 
the coefficient of absorption, similar to those that 
exist on closed trajectories when k >"' 0. 

5. ANISOTROPY OF THE ABSORPTION ON OPEN 
PERIODIC OR STRONGLY ELONGATED 
CLOSED TRAJECTORIES 

Trajectories of this type are as a rule insigni
ficant in the absorption of ultrasound. Exceptions 
are the almost-periodic trajectories with a period 
on the order of the reciprocal-lattice period. In 

*In view of the smallness of the amplitude of the oscilla
tions connected with the saddle point, we do not give the 
exact formulas and limit ourselves to the remark that we must 
remember in the calculations that T ... oo logarithmically near 
the saddle point. The estimate in the text is valid if Yo In kr« 1. 



154 KANER, PESCHANSKII, and PRIVOROTSKII 

order to make the following arguments clear, let 
us consider a specific example of a "corrugated 
cylinder" surface, when the vector H is almost 
perpendicular to the axis x of the cylinder. 

In addition to the closed trajectories contained 
within each reciprocal-lattice cell, there exist 
strongly elongated closed trajectories/ which in
clude ~ lj!-1 cells of the reciprocal lattice ( ljJ is 
the angle between H and the plane perpendicular 
to x). When k is perpendicular to the x axis, 
then the strongly-elongated trajectories have only 
two points with k · v = 0. When ljJ « r/Z, the time 
of motion of the electron between the neighboring 
points where k · v = 0 is considerably greater than 
the time of the free path, t0• In this case the 
H-dependent contribution to the absorption from 
the considered trajectories is exponentially small, 
and the coefficient of absorption from the strongly 
elongated trajectories is the same as when H = 0. 

When r/Z « ljJ « 1 and k 1 H, O!osc is on the 
order of a 0 (Zr)(kr)-1121jJ 2, and the order of magni
tude of the period of oscillations is lj!-1 times as 
small as in the case of closed Fermi surfaces. 

Let k be directed parallel to the x axis, and 
let q~ > 0 when 0 < ta < T/2 and q& < 0 when 
T /2 < ta < T. The number of points with k · v = 0 
on a strongly elongated closed trajectory is of the 
order of ljJ-1• To estimate the sum under the inte
gral sign in (2.13) let us calculate 

fJ 

S = ~ gjgzlj!z exp [ ~ (v- iq) dt] . (5.1) 
o<t1<tz<T!2 tz 

The remainder of the sum is of the same order as 
S. Confining ourselves to linear terms in ljJ 
« (kr)-1, we obtain 

~ . 
A=\ dt={A+A'IJ(l-J) (l-j=2n+l) (5.2) 

11 ~ q A'IJ (l- j) (l- j = 2n), 

where A ( Pz) ~ kr; n is an integer. 
Using (5.2) and replacing summation over tj 

and tz in (5 .1) by integration with respect to j and 
l, we obtain 

S ~"ljl-2jgJj2 (I+ eiA) {(2iA -nrfl 

(5.3) 

With the aid of (5.3) we can readily estimate the 
contribution to from strongly elongated trajectories. 
The results of calculations are listed in the follow
ing table: 

ct.mon /ct.o 
ct.,osc /ct.o 

I " "<(k/)-· 

I lir 
(lfr) (kr)-'lz 

(kr<ji)-2 

(kr)-'1• <\J-1 

If the vector H is tilted away from a crystallo
graphic plane with small rational indices (nmO) 
(../n2 + m2 « l/r) by an angle less than (kl)-1, 

then the open trajectories make the same contri
bution to the absorption of the ultrasound as the 
strictly periodic trajectories. 

6. CONCLUSION 

Magnetoacoustic resonance can be used to re
construct the topology and the form of the Fermi 
surfaces in metals. 

a) The presence of resonant oscillations of the 
non-harmonic type when k 1 H is connected with 
the existence of open periodic trajectories for a 
given direction of H. The observed resonances 
at k · H ;« 0 are evidence of the non-convexity of 
the Fermi surface, i.e., of a sharp deviation of the 
dispersion from a quadratic law. 

b) If open periodic trajectories exist for a 
given direction of H, then the diagram of the rota
tion of the vector k in the plane k 1 H should dis
close a sharp maximum when the vector k is 
parallel to the direction of the open. periodic tra
jectory. This maximum is the principal (greatest) 
one and its position is independent of the magnetic 
field, whereas the position of the lateral maxima 
shifts with changing H. For closed trajectories, 
the absorption is almost isotropic when k 1 H, and 
there are no resonant oscillations. 

c) To determine the form of the Fermi surface 
we can use non-resonant oscillations of the har
monic type, the period of which is determined by 
the extremal dimensions of the Fermi surface in 
the k x H direction. Owing to the sharp anisotropy 
in the angular dependence of the amplitude of the 
nonresonant oscillations due to the open periodic 
trajectories, it is possible to determine the ex
tremal dimensions of the open and closed trajec
tories separately. 

The experimental researches of Galkin and 
Korolyuk 11 on single crystals of high-purity tin at 
w/27r = 220 Me/sec have shown that resonant non
sinusoidal oscillations exist when k 1 H. All the 
main characteristics of the experimental curve 
(periodicity in the reciprocal of the field, vanish
ing of the oscillation phase, dependence of the width 
and height of the maximum on the field) confirm 
fully the theoretical deductions.U Galvanomagnetic 
measurements 9• 10 show that the Fermi surface of 
tin is open in the ( 001) plane. The period of the 
reciprocal lattice as calculated from the period of 
these oscillations is in good agreement with the 
known crystallographic data (see reference 11). 

Recently Morse and co-workers determined the 
extremal dimensions of the open Fermi surface of 
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gold and silver in the ( 111) plane from the periods 
of the nonresonant oscillations. Their data are in 
good agreement with the results of galvanomagnetic 
measurements, the de Haas -van Alphen effect, 
and others. 

Thus, an investigation of the absorption of 
ultrasound in metals in a magnetic field, along 
with galvanomagnetic and other effects, is a good 
method of reconstructing the topology of Fermi 
surfaces in metals. It yields not only the direc
tions of the open trajectories, but also the anisot
ropy of the diameters and hence the form of the 
extremal sections on the Fermi surface. The ab
sorption of ultrasound is more convenient than the 
other high-frequency properties of metals in that 
it is a volume rather than surface phenomenon, 
and consequently the need for a perfect surface 
finish is eliminated. 

In conclusion, we are grateful to L. D. Landau, 
I. M. Lifshitz, M. I. Kaganov, and V. L. Gurevich 
for a discussion of the results of this investigation. 
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