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Using Bogolyubov's method, we treat the possibility of super-fluidity of nuclear matter and 
of He3 for the case of realistic interactions between fermions in S states. We show that in 
the normal state, near the Fermi surface, repulsion rather than attraction predominates for 
a pair of nucleons with opposite momenta and spins. However, because of renormalization of 
the repulsive term in the compensation equation, nuclear matter may become superfluid. The 
reason for the absence of superfluidity for He3 is given. 

1. INTRODUCTION 

IN recent years there have appeared a whole series 
of papers in which Bogolyubov's method1 is applied 
to the study of the problem of superfluidity of the 
nucleus and of nuclear matter.1- 3 The essential 
feature of this method is the use of ordinary per­
turbation theory. However, as was shown by 
Brenig,4 for an arbitrarily small attractive poten­
tial the wave function for a pair of nucleons with 
energy near the Fermi surface and with opposite 
momenta has a singularity, so that the use of ma­
trix elements of the potentials computed using 
plane waves is not possible. 

On the other hand, Brueckner's theory,5•6 which 
takes account of correlations in the many body 
system, cannot be simply combined with Bogolyu­
bov' s method by replacing the potential V by the 
K matrix, since the latter has a singularity for a 
pair of nucleons with opposite momenta near the 
Fermi surface. At the same time, the correctness 
of the final result of Bogolyubov's theory, which 
gives such a good description of superconductivity 
in metals, permits one to hope that with some 
modernization this method can also be applied to 
the problem of superfluidity of nuclei. 

Actually, both for Brenig and Bogolyubov the 
Pauli principle plays the main role in the forma­
tion of the energy gap. But it is included entirely 
differently in the two methods. While in Brenig's 
method it appears via the singularity of the K 
matrix and the pairing of real nucleons with energy 
close to EF• in Bogolyubov's method it comes 
from the compensation of the dangerous diagrams 
when we use second quantization with Fermi quasi­
amplitudes. 

Continuing this comparison, one may hope to use 
Bogolyubov's theory for studying superfluidity of 
nuclear matter by replacing the interaction poten­
tial by the K matrix and calculating it so that the 
correlations near EF are not included twice. In 
particular, the K matrix near the Fermi energy 
EF can be calculated disregarding the Pauli prin­
ciple. In the theory of superconductivity of metals 
such a replacement of the potential by the K matrix 
disregarding the Pauli principle gives nothing new, 
since for the relatively weak interactions in the 
metal the matrix element of the potential is not 
drastically different from the K matrix omitting 
the Pauli principle. But in the nuclear case this 
replacement enables us to treat some interactions 
which cannot be handled in the usual Bogolyubov 
scheme, for example the case of an infinite repul­
sion between nucleons at small distances. 

According to the results of Bogolyubov and co­
workers,1 the equation of compensation of danger­
ous diagrams has a nontrivial solution, which cor­
responds to a superfluid state, if: a) the interaction 
is attractive and weak; b) the interaction is attrac­
tive and localized on the Fermi sphere; c) the in­
teraction between nucleons is repulsive and highly 
singular, so that the derivative of the matrix ele­
ment of the interaction, averaged over angles, is 
sufficiently large. 

Interactions between nucleons of type c) are not 
known at present. As will be shown in Sec. 2, case 
b) apparently is also not realized in the nucleus. 

In the work of Solov' ev2 and Dotsenko3 on the 
superfluidity of nuclear matter, it is postulated that 
case a) is satisfied, and by means of a formalism 
analogous to that developed in reference 1 they ob­
tain an energy gap between the superfluid and nor-
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mal states. From this they conclude that a super­
fluid state is favored for nuclear matter; however 
no specific features of the nucleus appear at all in 
these papers. 

As we shall show, in the general case of the 
"normal" state a short range repulsion and attrac­
tion, for the case of a pair of particles with arbitrary 
relative orbital angular momenta, affect the wave 
function of the pair completely differently, so that 
their influence does not reduce to an effective at­
tractive potential. 

For the special case of nuclear matter, the cri­
terion of superfluidity was rewritten by Bogolyubov 
in the form: 

IE (k)- EF I 'ljJ (r) + V (r) 'ljJ (r) = E'¢ (r). (1) 

If by a suitable choice of lj; we can obtain E < 0 
from (1), the superfluid state is more favorable 
than the normal state, which is the criterion for 
superfluidity. 

Equation (1) was used by Cooper, Mills, and 
Sessler7 for investigating the possible superfluidity 
of nuclear matter, by choosing trial functions con­
taining variational parameters. The authors con­
cluded that there was no superfluidity for their 
class of trial functions. Naturally, however, they 
cou1d not conclude that superfluidity of nuclear 
matter is impossible. Besides, as we shall see in 
Sec. 3, the trial functions used in their work are 
far from the actual solution of Eq. (1). 

2. THE POSSIBILITY OF REPLACING NUCLEAR 
POTENTIALS BY AN EFFECTIVE ATTRACTION 

The fundamental difficulty in the analysis of the 
interaction of two nucleons is the simultaneous in­
clusion of the strong repulsion at small distances 
(which we shall call the "hard core" ) and the 
short range attraction. 

In most present day work on nuclear theory, it 
is assumed that the forces between nucleons in the 
nucleus are almost the same as the forces between 
isolated nucleons, concerning which we can get infor­
mation from scattering experiments. This ques­
tion has been discussed repeatedly in the papers of 
Weisskopf, Bethe, Brueckner et al., who have suc­
ceeded, by starting from this assumption, in ex­
plaining a whole host of properties of nuclei. 5•6 

There is therefore no reason for supposing that the 
inetraction of nucleons near the Fermi surface is 
different from the interaction between isolated nu­
cleons and consequently is no different from that 
of the other nucleons in the nucleus. An argument 
in favor of this is the agreement between the para­
meters of the real part of the optical potential for 

nucleons having an energy greater than E F with 
the parameters of the self-consistent potential for 
nucleons with energy below E F· We shall there­
fore use the Gammel-Thaler8 potentials for the 
interaction. 

In the theory of superfluidity of nuclear matter, 
n-n and p-p interactions are of particular inter­
est. In fact, because of the large difference in E F 
for neutrons and protons, a neutron and proton with 
equal and opposite spins and momenta cannot simul­
taneously lie near the same Fermi surface. But in 
the interaction of a pair of identical particles, only 
the central singlet forces are important for the 
production of superfluidity. In fact, a pair of iden­
tical particles ( T = 1) with even l can occur only 
in the singlet state, where the tensor forces are 
equal to zero. In triplet states with l = 1, 3, 5, ... , 
where tensor forces are important, the superfluid 
state is not formed because the interaction of the 
nucleons in this state will be repulsive. 8 

In many papers on nuclear theory and super­
fluidity of nuclear matter, it is assumed that the 
interaction of two nucleons can be approximated by 
an effective attractive potential. We shall show 
that in the "normal" state of nuclear matter such 
a replacement is not possible, i.e. case a) of Sec. 
1 does not occur. 

In the presence of central forces alone, the wave 
function for a pair of nucleons with opposite mo­
menta and spins, corresponding to a relative or­
bital angular momentum l, has the form 

00 

'¢z (r) = h (kr) + 4rt ~ G 1 (r, r') V (r') '¢z (r') r'2 dr', (2) 
0 

where Gz( r, r') is the Green's function. In defin­
ing the Green's function, we must consider the fol­
lowing points, which enable us correctly to select 
the "normal" state. Far from kF one could with­
out any contradiction combine the Brueckner pro­
cedure with that of Bogolyubov and replace the po­
tential V by the K matrix. Near kF, a precise 
inclusion of the Pauli principle leads to a singular­
ity in the K matrix. Therefore in order not to 
take account of the Pauli principle twice, as pointed 
out in the introduction, we should in this region re­
place the potential V by the K matrix and disre­
gard the Pauli principle. Thus for the study of the 
normal state we must construct Green's function 
which, in the region far from kF would coincide 
with the exact Green's function, which was found 
in the paper of Brueckner and Gammel, 9 and near 
kF would not give a singular K matrix and in 
particular would not take account of the Pauli prin­
ciple. 
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Starting from these considerations, we choose 
Gz ( r, r') in the form 

G 1 (r, r') = (~t*k I 4n!i2) n1 (kr>) j 1 (kr d exp {-a (r>- a)}, 
(3) 

where J-t* is the effective mass, which takes into 
account the self-consistent field (J-!* = 0.6 m ); nz 
and jz are the spherical Neumann and Bessel func­
tions of half-integral order; a is the radius of the 
core; r> ( r<) denotes the larger (smaller) of 
r, r'; a is a variational parameter which takes 
account of the effect of the Pauli principle, and is 
determined from the condition that the total energy 
be a minimum. This parameter is approximately 
equal to the reciprocal of the "healing distance" . 10 

The Green's function (3) satisfies the following 
physical conditions: 1) it describes correctly the 
behavior of the wave function far from kF; 2) it 
gives the correct binding energy of the whole sys­
tem; 3) for a- 0, the function Gz ( r, r') goes 
over into the ordinary Green's function for a pair 
in a medium, in the "effective mass" approxima­
tion in which one disregards the Pauli principle. 
In this paper, we choose the value a= 0.8 kF in 
agreement with the work of Weisskopf and co­
workers.10 All the following calculations are done 
for the two cases: a= 0 and a= 0.8 kF. 

Let us consider a potential of the type 

U ( ) { oo, r <a 
r = V (r), r >a · (4) 

In this case we write (2) in the form 
a 

'ljlz (r) = jz (kr) + 4n ~ 0 1 (r, r') U (r') 1jJ1 (r') r' 2 dr' 
0 

co 

+ 4rt ~ G 1 (r, r') V (r') 1jJ1 (r') r' 2 dr'. (5) 
a 

Following Brueckner and Gammel, 9 to include the 
effect of the repulsive core we make the following 
replacement in (5): 

U (r) 'ljJ1 (r) = M (r- a) for r <a. (6) 

Substituting (6) in (5) and using the boundary 
condition 1/Jz (a) = 0, we find for /1.., 

. (k ) 00 

').. = 4n~;G ~a a) - a2G 1(a a) I G1 (a, r') V (r') 'ljJ1 (r') r' 2 dr'. 
I • I ' ~ (7) 

From (5), using (6) and (7) we have 
00 

'ljJ1 (r) = S1 (r) + 4rt ~ F 1 (r, r') V (r') 'ljJ1 (r') r' 2 dr', (8) 
a 

where 

S1 (r) = jz (kr) [1 -- e-~(r-a>tan.hl (a)/ tan1h1 (r)], 

in which 

(9) 

tan h1 (r) = jz (kr) j n1 (kr), (10) 
F1(r, r') = G1(r, r')-Gz(a, r')Gz(r', a)fGz(a, a). (11) 

Since kFa < 1 (for the actual density, kF = 1.48 
x 1013 cm-1; a= 0.4 f), expanding tan hz (a) in 
series in kFa and stopping with the first terms, 
we obtain 

tanh0 (a)=- kFa, tanh1 (a)=- (kFa) 3j3, 

tan h2 (a)= - (kFa) 5 /45. (12) 

Starting from the relations we have found, we 
shall give the condition under which one can, in 
principle, replace the nuclear interaction of the 
nucleons by an effective attractive potential. It is 
obvious that the repulsive core is completely com­
pensated by the attractive potential if the wave 
function 1/Jz ( r) can be replaced by the free function 
jz (kr ). Actually this condition is a sufficient cri­
terion for superfluidity, since we then realize case 
a) of Sec. 1. We can express the mathematical 
condition for the criterion formulated above by re­
placing the quantity 1/Jz ( r) in (8) by the free wave 
and multiplying the attractive potential by an as 
yet undetermined function Kz ( r ), which we shall 
find later from the condition that the criterion is 
satisfied. Using (9), we have 

jz (kr) = jz (kr)- nz (kr) tan h1 (a) e-c.t(r- a) 
00 

+ 4nKz (r) ~ F 1 (r, r') V (r') jz (kr')r' 2 dr'. (13) 
a 

Then using the properties of the Green's function 
we get for Kz ( r ), 

co 

Kz (r) = n1 (kr) tan1h1 (a) e-c.t(r-a) [ 4n ~ { 0 1 (r, r') 
a 

~t*k 
- 4nh2 n1 r) nz (r' tanh1 (a) e-c.t(r-aJe-c.t(r'-a>} 

XV (r') jz (kr') r' 2 dr' r1 
• (14) 

We shall evaluate Kz ( r ), as given by (14), for 
two limiting cases: when a :s r :s r 0 and when 
r- oo. The second case is equivalent to the re­
quirement that the phase of the scattered wave be 
zero. For the case of a ~ 0, the function Kz ( r) 
= 0 for r-oo. When we omit the effect of the 
Pauli principle (a = 0 ) , the value Kz ( r) - Kz, 
where 

K/ = [ 11~: r {j~ (kr') -tanhz (a) n1 (kr')jz (kr'')} v (r') r'2 dr'] _, 
a 

xtanhl (a). (15) 

It is obvious that in the intermediate range the 
value of Kz ( r) lies between K~ and Kz. There­
fore we should take the larger of these values for 
the condition for replacement of 1/Jz ( r) by jz ( kr). 
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Let us consider the case of l = 0. As we see 
from formula (12), the effect of the repulsive core 
is largest in this state. For comparison with the 
work of Cooper, Mills and Sessler, 7 we choose the 
interaction potential for the nucleons in the form 

U { oo , r<;a 
(r) = -Voe-p.(r-a)' r >a ' (16) 

where a= 0.4, V0 = 26 Mev, fJ. = 0.544 x 10 13 cm- 1• 

Substituting (16) in (14) and averaging over the re­
gion a :s r :s 1/tJ. for k = kF and arbitrary a, we 
get 

( II-i- Cl)2 + 4k2 1 + llQ Kg (a)= 11.2 r ' F r (17) 
112 + 4k} 1 + 11a + 2Cla 

K~ (a) is a monotonically decreasing function, with 

~(O) = 11.2, Kg(o.s kp)=9. 

From this it is clear that the operation of the Pauli 
principle has little effect on the relation between 
the attractive and repulsive forces near kF· For 
a = o, from (15) we have K0 = 2.1. 

The estimate of K 0 which we have given for the 
potential (16) shows that its attractive part is 
9 - 11 times too weak to compensate the repulsion. 
Moreover, as we shall see in Sec. 3, near kF, for 
the state of a pair of identical particles with l = 0, 
the repulsive energy is 2.28 times as great as the 
energy of attraction. Such nucleons can be kept 
inside the nucleus only through their interaction 
with other nucleons having k ¢ kF and with nu­
cleons in triplet states. But for pairs with k :s kF 
and in arbitrary relative states (T = 0,1; S = 0,1; 
l 2:: 0) the introduction of an effective attraction is 
possible only when condition (14) is satisfied. In 
particular it seems that this replacement can be 
made for states near kF, with l = 2, since K~ 
= 0.4. 

An attempt to introduce an effective attractive 
interaction potential between nucleons in the shell 
model was made by Bauer and Moshinsky. 11 Re­
placing the effect of the repulsive core by the 
pseudopotential 

(18) 

and also replacing the attractive potential V by 
-go (r), where 

- g ~ () (r) dr = ~ V (r) dr, 

these authors obtained a total attractive potential 
of the form 

(19) 

where -a*= a- gtJ.*/41Tli2• All the estimates in 
their paper are made with this potential. For the 

two-particle potentials which are known from scat­
tering experiments, the relation a* ~ - a holds, 
so that we can apply (19) for the calculation of the 
interaction energy of nucleons in nuclear matter, 
using the formalism of Huang and Yang, 12 who cal­
culated the energy of the repulsive core with the 
pseudopotential (18). Then the interaction energy 
has the form 

n2k 2 { 2 12 } V= 211/ A a*kF ;:r+ 35 n2(11-2ln2)(a*kp) 2+ .... 

The total energy of the system is E = T + U, where 
T is the kinetic energy, and has no minimum for 
any value of kF, i.e. a system with such an inter­
action is unstable. 

3. SUPERFLUIDITY OF A SYSTEM OF STRONGLY 
INTERACTING FERMIONS 

Let us apply the apparatus of the Bogolyubov 
theory to derive the criterion for superfluidity of 
nuclear matter for the case of realistic nucleon­
nucleon interactions. We shall consider only n-n 
and p-p interactions between pairs with opposite 
spins and momenta, which are the most important 
for the appearance of superfluidity. 3 We write the 
compensation equation, which is equivalent to Eq. 
(1), for the radial non-symmetric case in the linear 
approximation: 

c (k, Qk) =- +~ ~ dQk' ~ dk' k' 2 J (k, k') 

X c (k', Qk,)/V !'.2 + G2 (k'), (20) 

where the matrix element of the interaction, 
J ( k, k' ) is defined by the formula 

J (k, k') = ('¢k (r), V (r) '¢k' (r)). 

Here 1/Jk( r) is the wave function of the relative 
motion of the pair: 

'¢k (r)= (eikr ± e-ikr)/V2, 

(21) 

(22) 

and the sign + (-) holds for even (odd) states; 
D. is the width of the energy gap; 

G (k) = Fli2/2~*- k} n2/2~*. 

We know that the superfluid state appears when 
there is a nontrivial (i.e., one with C (k, !.1) ¢ 0) 
solution of (20). In the general case, the energy of 
a single-particle excitation in the superfluid state 
is given by the formula1 

E: (k) = V<E~ (k)) 2 + C2 (k, Q). 

The elementary excitations are separated from the 
ground state by a gap D.= min C (kF, !.1 ). We ex­
pand C (k, !.1) in spherical harmonics: 
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co 

i=O m=-1 

From (20) we get 
1 ~ ~ dk'k'2 Ctm (k) Y tm (Bk, <pk) = ----- dQk' ,::r7;1 ;==;=~:;, 

2 12nl3 r /',. 2 + ~· (k') 

X J (k, k') Ctm (k') Ytm (Bk', <pk•). (24) 

From now on the calculations will be done only 
for even states (including the odd states does not 
change the final appearance of the formulas). 

We represent eik · r in the form 

I 

eikr = 4n ~ "L; i 1 h (kr) Yim (8k, <pk) Ytm (8,, <p,). (25) 
I m=-l 

For the function of a pair in an even state, we then 
have 

l 

1Jlk(r)=;~LJ L; il[l 
l m=-l 

(26) 

In this case the matrix element of the interaction 
(22) takes the form 

J (k, k') = "L; (4~)2 [I 
l, m 

co 

+ ( - I )1]2 ~ h (kr) h (k' r) V (r) r 2 drYim(8k'' <pk') 
0 

X Ytm (Sk, <pk)· (27) 

Substituting (27) in (24), we get equation (20) in a 
new form: 

1 ~ k' 2 dk' ' Ctm (k)= --2 V Kt (k, k) Ctm (k'), (28) 
1',.2 + £2 (k') 

where 
00 

Kt(k, k') = ~ ~ iz (kr) h (k'r) V (r) r 2dr. (29) 

Formula (29) enables us to determine Kz (k, k') 
for any potential, when we replace V by the K 
matrix calculated disregarding the Pauli principle 
(a = 0 ). Using the K matrix calculated with the 
Green's function (3) with a ;.! 0 leads to no funda­
mental change in the result. 

Since Eq. (28) enables us to find Cz m only to 
within a sign factor, it is also impossible to deter­
mine C (k, Qk) in (23) uniquely. We shall there­
fore choose D. so that we get Eq. (20) in the radi­
ally symmetric case which was treated earlier by 
Bogolyubov, Tolmachev and Shirkov. 1 To do this 
we assume that D.= <c (kF, Q )>, where the 
symbol < ... > means an average over angles. 
We then get for the energy gap, 

11 = 1n \ "L; Ctm (kF) Yt m (6k, <pk) dQk = 1 C00 (kF ). (30) 
J t, m V 4n 

The correction to this value coming from including 
states with higher l values does not exceed a few 
percent, because of the smallness of the matrix 
elements of the interaction in these states. 

Let us apply (28) to the solution of the problem 
of superfluidity of nuclear matter. We consider 
the case of l = 0. First we calculate the matrix 
element (29) for the potential (16). To get the 
matrix element for the core potential, we first re­
place it by a finite barrier of height Vo and width 
a, and find the wave functions for a pair, for r :::: a 
and r :sa: 

'¢1 (r) = Ar-1 sinh\~', 

'¢II (r) = B (krt1 {sin kr- D cos kr}, 

r<;a; 

r;>a, (31) 

where (3 = [J..t*ti-2 (V0 -ti2k}/J..t*)] 112• Matching the 
solutions at r =a and using the normalization con­
dition, we get for V0 - oo: 

where 

'¢I (r) = (- I )P sinh~rm cosh ~a, 

1Jl 11 (r) = (- I )P (krt1 sink (r- a), 

{ 
0, ka =/= n (2n + 1)/2 k:J. =1= n'n 

p = n , ka = n (2n + 1)/2. . 
n', ka=n'n 

The function lfJI has the property (6) which was 
used by Brueckner and Gammel. 9 In fact, 

(32) 

(33) 

(34) 

(-1)Pfi2(3 2 sinh[3r /0, r <a 
Vo '¢! (r) = t-t* (3cQsh[3a= \ (-I)P h2 ~/(.t*, r =a· 

I 

Applying (32) to the computation of the matrix ele­
ment of the core potential gives 

Kdk, k') = ( -I)P ( 41i.2ff.t'nk) sin ka, (35) 

where p is determined by the value of k'a. The 
matrix element (35) for ka « 1 coincides with the 
matrix element of the core when calculated with 
the pseudopotential (18). Since K1 (k, k') from 
(35) is a discontinuous function having jumps, it 
cannot be substituted immediately in formula (28). 
However the analysis of the compensation equation 
in a form more general than (20) shows that in­
cluding the points of discontinuity of the matrix 
element (35) gives a zero contribution to the solu­
tion of the equation. We shall therefore in the fol­
lowing consider K1 ( k, k' ) without the factor 
(- 1 )P. 

The matrix element of the potential (16) under 
the conditions ka, k'a « 7r/2 has the form 

K 2 (k, k') = - 8V0f.L/:rt [f.t2 + (k'- k) 2 ] [f.t2 + (k' + k) 2 J. (36) 

From (35) and (36) we see that with increasing k 
and k', the matrix element K2 falls off much 
faster than K1. In particular they are equal for 
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k = k' = 0. 71 kF, while for k = k' ~ 2kF the matrix 
element K1 is ten times as great as K2• We may 
therefore assume that the attraction exists only 
over a certain range 0 < k :::: w, 0 < k' :::: w. An 
estimate gives K1 ( kF, kF) = 34.4 x 10-39 Mev cm3 

and K2 (kF, kF) = 15 x 10-39 Mev cm3• Thus near 
kF the energy of repulsion of the core in the 
"normal" state is 2.28 times as great as the en­
ergy of attraction. 

Let us represent the coefficient C00 (k) in Eq. 
(28) for l = 0 in the form 

Coo (k) = {Cr (k), 

c. (k), 

For C2( k ), we find from (28), 
co 

(37) 

C2 (k) = - (21i2 sin akl1t11· k) ~ dk'C00 (k')k'2/V ~2 + 62 (k'). 

0 (38) 
Equation (38) has the solution 

"' 
c2 (k) =- (21i2 sin akl1t~J-. kN) ~ dk' Cr (k') k'2 IV ~2 + 62 (k'), 

where 
0 (39) 

co 

N = 1 + (21i 2ln~J-*) ~ dk'k'sinak'IVC2 (kF) + 62 (k'). (40) 
a 

Substituting (39) in (28), we obtain an equation for 
C1 ( k). Introducing the quantity C ( k) = C1 ( k )/ 47r, 
we have 

"' 
c (k) = - -i ~ dk' K (k, k') C(k') k'2 IV C2 (kF) + 62 (k'). 

0 (41) 
Thus, by choosing the gap in the form 

~ = < C (kF, Q )>, we have in fact arrived at a 
radially symmetric equation in Bogolyubov's form. 
Here in Eq. (41), 

K (k, k') = K 2 (k1 k')- (21i21 N1t~J-*) k-1 sin ak. (42) 

From formula (42) we see that the matrix element 
of the repulsion appears in renormalized form be­
cause of the slower decrease in k-space of the 
matrix element of the core potential as compared 
to the attractive potential. Since K (k, k') is small 
near kF (this can be seen from the value of the 
parameter p ) we can obtain an approximate for­
mula by using Bogolyubov's formalism: 1 

K (k, kF) - _ , Pr 
C (k) = ---w11e l.P, p = P2- -, K (kF, kF) N (43) 

where 

A nontrivial solution of equation (43) exists for 
p > 0. In this case we find for the gap ~. 

(45) 

The quantity N is of great importance in the 
solution of the problem of superfluidity. N depends 
strongly on w, and the choice of w is difficult. 
However the estimate of the matrix elements given 
above enables us to assume that w is near to kF· 
Then for kF < w < 1.5 kF, we get p > 0, and the 
superfluid state should occur. In this case, for 
values of w sufficiently close to kF, we can ob­
tain a wide gap, in particular ~ ~ 1 Mev (see ref­
erence 13). Here we should remember that matrix 
elements for the nucleus may differ markedly from 
the matrix elements for nuclear matter. 

Thus we here meet an extremely peculiar situa­
tion, where in the "normal" state near the Fermi 
surface the repulsion predominates, but because 
of renormalization of the core matrix element in 
the compensation equation, the criterion for super­
fluidity is nevertheless satisfied. Consequently 
nuclear matter is superfluid not because of the 
anticipated presence of an effective attractive in­
teraction in the "normal" state, but rather be­
cause of the specific character of the nuclear in­
teractions; here the expansion parameter has a 
value p « 1, i.e., the condition for convergence of 
the perturbation series is satisfied. 

Let us now show that superfluidity is impossible 
for a system of He3 atoms which interact in S 
states. For the interaction potential of the atoms 
we again choose the expression (16), but with dif­
ferent values of the parameters; 7 

V0 =10°K, a= 2.5A. (46) 

In this case, because of the very large value of a, 
the matrix elements of the attraction must be cal­
culated for distorted waves, i.e., by replacing V 
by the K matrix in which we disregard the Pauli 
principle. For the distorted wave in K2(k, k' ), 
we use the function (33) with the parameter values 
in (46). For the parameters JJ.* = 1.843 m and kF 
= 0. 735 A-t, 14 the matrix element of the attraction 
for small k and k' coincides with (36), while it 
oscillates for large values of k and k'. We may 
choose 1r/a as the width of the well. With these 
values of the parameters we get p 1 = 1.6, p 2 = 0. 7, 
and N < 1; consequently p < 0 and the superfluid­
ity criterion is not satisfied. Thus there is no 
superfluidity of He3 in this state. 

An investigation of the problem of superfluidity 
of nuclear matter and of He3 was carried out by 
Cooper, Mills, and Sessler7 using the method of 
trial functions. On the basis of the potential (16), 
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with the parameters (46) which for He3 give a good 
approximation to the exact potential of Brueckner 
and Gammel, 14 they found the required increase in 
the attractive potential and analyzed the super­
fluidity criterion in the form (1). 

A comparison of the value K = 9- 11 obtained 
by us in Sec. 2, with the result of Cooper et al. 7 

for nuclear matter (K = 5-7), shows that these 
estimates do not differ markedly from one another. 
This is a consequence of the fact that the estimates 
in reference 7 were made using trial functions 
close to the functions of the normal state. These 
estimates somewhat overestimate the role of the 
repulsive core, whose influence in the superfluid 
state is drastically suppressed as a result of the 
renormalization. In the case of He3, the estimate 
of reference 7 coincides with ours, even though it 
was actually made with the same omissions as in 
the case of nuclear matter.* 

The similarity of the results obtained here to 
the results of Brenig4 confirms the arguments 
made in the Introduction concerning the applicabil­
ity of Bogolyubov's method (with the modifications 
made above) to the investigation of the problem of 
superfluidity of nuclear matter, and enables us to 
understand better the mechanism of appearance of 
the superfluid state. 
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