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It is shown that the predictions of the statistical theory of multiple meson production remain 
almost unaltered if the conservation of the z component of the angular momentum is taken 
into account in the simplest classical way. The resulting anisotropy in the angular distribu
tion of the particles is apparently smaller than that observed in reality. 

IT is asserted in several papers on the statistical 
theory of multiple production of particles that the 
anisotropy in the angular distribution is due to the 
restrictions connected with the conservation of the 
initial angular momentum by the particles in the 
final state. 1 

However, there is a certain inconsistency in 
this argument. Indeed, when we replace, in the 
statistical theory, the quantum mechanical expres
sion for the probability of the process 

( ~ is the square of the modulus of the matrix 
element) simply by the statistical weight2 

S,. = vn \6 (E-l: £11) 6 (P-l: PI!) dp1 ... dpn, (2) 
.J 

we assume that the matrix element is constant, 
i.e., it conserves angular momentum in a trivial 
way ( invariance under rotations ) . 

The essence of the above-mentioned assertion 
seems to be that we require an expression for the 
matrix element which, while being invariant under 
rotations, depends on the angle in the way pre
scribed by experiment. Such an expression has 
not yet been found. 

Since a consistent quantum mechanical treat
ment is impossible, it is of interest to investigate 
a certain classical model, in which the behavior of 
the probability Wn is imitated by the statistical 
weight of a rotating system: 3 

Sn = ~ 6 (£- l:Ek) 6 (P- l: Pk) 6 (M 

-l: [rkx Pill) dp1 •.• dp,.1r1 ••• drn~ (3) 

this procedure is consistent with the statistical 
theory of Fermi and introduces in the simplest 
classical way angular dependences which are con
nected with the conservation of angular momentum. 

The comparison of (3) and (1) shows that this 
is equivalent to the replacement 

~-'>-~cl = ~ 6 (M -l: [r~<xPk]) dr1 •.. dr,.. (4) 

This replacement presupposes that the quantity 
~ cl retains some of the characteristic features 
of the quantum mechanical expression ~. 

The calculations with the formula (3) were done 
by using the Monte Carlo method ( method of 
random stars). 4 Since only one axis - the z axis 
of the interaction - is fixed experimentally, an 
average being taken over the other two axes, we 
must integrate over all values of the transverse 
components of the angular momentum Mx and My 
in formula (4). Then only a single o function con
taining the z component of the angular momentum 
remains in that formula. Since we have chosen the 
z axis along the momentum of the incident particle, 
Mz = 0, so that no new parameters appear in our 
model. 

Integrating formula (4) over the volume of the 
Fermi ellipsoid, 2 we obtain. 

~cl = ~ 6(l: [rk P~<D dr1 ... drn 
(V) 

X 

vn f n1 1 \ = 2n ~ d'J... I V ~ exp {i'J... [rxpklz} dr 
-co k=l (V) 

00 " J 
= ~ \ d'J... V 9nj2 II 'iz (R'ApJ k) 

n ~ k= (R'Ap .Lk) '!. 

( J is a Bessel function, Plk is the transverse 
momentum of the k-th particle, and R is the 
radius of the ellipsoid, i.e., the effective radius 
of the nucleon). Substituting this expression in 
(1), we can calculate the probability for the produc
tion of various systems of particles occurring in 
the collision. 
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The method of random stars also allows us to 
obtain simultaneously the angular and energy dis
tributions and the correlations between the direc
tions of emission of the produced particles. The 
computations were carried out for collisions of 
nucleons with energies of 10 Bev; together with 
the direct creation of the mesons, we also consid
ered the production mechanism going through an 
isobar. We obtained the following results (for 
more detail, see reference 5 ): 

1. The statistical weights, after normalization, 
are not very different from their values in the sta
tistical theory of Fermi, so that the multiplicity is 
almost unaltered (instead of lis = 3.68, one obtains 
3.70). The' same holds for the momentum distribu
tions. As the energies approach the reaction 
threshold, the cross sections decrease more slowly 
than in the Fermi theory. 

2. The angular distribution is anisotropic. The 
anisotropy becomes weaker as the number of par
ticles increases. If we characterize the anisotropy 
by the ratio of the numbers of particles emitted 
into the equal solid angles 0° :s () :s 60° and 60° 
:s () :s 90°, respectively, we find for 2, 3, 4, ... 
secondary particles the anisotropy 2.5, 1.29, 1.22, 
... (averaged over mesons and nucleons). The 
experimental values of this quantity are contra
dictory and display a wide spread; but they are 
probably higher than our values. 6 

3. The angular correlations between the parti
cles are also almost unchanged. We call attention 
to the following fact observed by us: the average 
value of the angle Bik agrees with the average 
value of the angle in the plane of the target <Pik; 
both depend only on the multiplicity. This agree
ment is also observed in the Fermi model. 

Our result that the physical quantities are 
insensitive to modifications of the statistical 
weight is evidently due to the fact that our cor
rected weight ID? cl depends only on the transverse 
components of the momentum, which vary only 
little. If, instead of the Fermi ellipsoid, we choose 

a volume of a different shape (flat disk, the peri
pheral part of an ellipsoid, etc. ) , M cl changes 
very little, retaining all its qualitative features. 

These calculations led us to the conclusion that 
it is futile to try to explain the anisotropy quanti
tatively using the classical analogy. It appears to 
us that this effect can only be explained by a quan
tum mechanical computation of the matrix elements, 
even if it be of the most approximate nature. 
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