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The problem treated is that of the radiation from an electron that moves into vacuum from 
a medium with spatial dispersion. The additional boundary conditions required to take 
spatial dispersion into account are discussed. It is shown that under certain conditions in 
addition to the transition radiation there is Cerenkov radiation produced from longitudinal 
waves in the medium and emerging into the vacuum. For the case of small absorption in the 
medium the angular distribution of this radiation is determined by the law of refraction to
gether with the condition for Cerenkov radiation in the medium. The main contribution to the 
transition radiation is the Cerenkov radiation from longitudinal waves, which is produced in 
the medium near the bounding surface (at a distance of the order of the wavelength). At 
large distances from the boundary this part of the Cerenkov radiation is a spherical wave 
and is confined to a narrow range of frequencies lying close to the plasma frequency. 

1. INTRODUCTION 

WHEN a fast charged particle moves in a region 
with spatial dispersion there is excitation of longi
tudinal waves ( plasmons). 1 ' 2 The resulting dis
crete energy loss of the particle is the Cerenkov 
radiation from the longitudinal waves ( cf., e.g., 
reference 3 ) . 

The problem of the emergence of this radiation 
into vacuum is of undoubted interest, since the 
radiation has a narrow spectrum that lies near the 
plasma frequency w5 = 4?rne2 /m ( n, e, and m are 
the density, charge, and mass of the electrons in 
the medium), and can be used both for the genera
tion of radio waves (in a plasma) and also for the 
generation of infrared and ultraviolet rays (in a 
dielectric). It must be pointed out that Cerenkov 
radiation from transverse waves actually appears 
in a medium at relativistic speeds of the particle, 
whereas Cerenkov radiation from longitudinal 
waves appears at much smaller speeds. For 
Cerenkov radiation from longitudinal waves to 
occur, the speed of the particle must exceed the 
average thermal speed of the electrons in the 
medium. 1 

The following are special features of this 
problem: 1) the passage of a charged particle 
through the boundary between two media produces 
a transition radiation, which at large distances 
from the point of emergence of the particle is 
indistinguishable from the Cerenkov radiation4; 

2) when spatial dispersion is taken into account 
there is a new solution of Maxwell's equations 
(longitudinal waves), which requires an additional 
boundary condition. 3 

Subject to a certain assumption regarding the 
additional boundary condition we find here the 
radiation fields for the passage of an electron 
from a medium into vacuum. As Garibyan has 
shown, 5•6 the transition radiation becomes actually 
appreciable only at ultrarelativistic speeds. At 
nonrelativistic particle speeds one can distinguish 
in the transition radiation a part of the spectrum 
in which the main contribution comes from the 
Cerenkov radiation from longitudinal waves. 

2. STATEMENT OF PROBLEM AND CHOICE OF 
BOUNDARY CONDITIONS 

Let the motion of the electron be normal to the 
boundary between the medium and vacuum. We 
shall regard the radiative energy loss of the 
electron as negligibly small in comparison with 
its kinetic energy. We take into account the effects 
of spatial dispersion for an isotropic medium by 
writing the connection between D and E in the 
form 

D = (e -+- M) E, (1) 

where D and E are the electric displacement and 
field strength at the point r, E =Eo + iy is the com
plex dielectric constant of the medium, o is a 
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parameter that characterizes the spatial dispersion 
of the medium, and .6. is the Laplacian operator. 
The magnetic permeability of the medium is unity. 
The expression (I) is equivalent to the inclusion of 
a term in the dielectric constant proportional to 
the square of the wave vector. 

We shall look for the field of the moving electron 
in the form of the sum of a longitudinal field ( cp) 
and a transverse field (A) with the gauge div A 
= 0. We solve the problem by the method proposed 
by Ginzburg and Frank7 and developed by Garibyan. 5 

For the radiation fields cp' ( k) and A' ( k) we get 
as the dispersion relations* for the longitudinal 
waves (for k ;.t 0) 

(2) 

where kfl = K2 + Afl, K and Ail being the tangential 
and normal components of the wave vector, and 
for the transverse waves 

(3) 

where 

In vacuum cp' ( k) = 0. 
As has been pointed out earlier, when spatial 

dispersion is taken into account the usual boundary 
conditions imposed on the normal and tangential 
components of the fields are insufficient. We can 
get a general formulation of the missing boundary 
condition by setting up a connection, containing 
some arbitrary constants, which is to hold between 
the amplitudes of the longitudinal fields and their 
derivatives at the boundary. Possible forms which 
are invariant with respect to rotation around the z 
axis and to reflection in the boundary plane are: 

eoiJq;fiJn + <X 1M (iJrpjiJn) = ct2e l_ oAn + a3oAn + a4MAn, (4) 

where 6 is the parameter that characterizes the 
spatial dispersion, n and T are the normal and 
tangent to the boundary plane, and a and {3 are 
constants. Dots denote differentiation with re
spect to time. Ginzburg3 proposes as the addi
tional boundary condition 

D'=ME =0. (6) 

For certain values of the constants a and {3 the 
conditions (4) and (5) go over respectively into the 
normal and tangential components of the condition 
(6). 

*Here and in what follows the intermediate calculations 
are not presented (cf. reference 5). 

If we take Eq. (5) as the additional boundary 
condition, then the amount of Cerenkov radiation 
from longitudinal waves emerging into vacuum will 
be the same for passage of the electron from the 
medium to vacuum and for its passage from 
vacuum to the medium. In particular, if we take 
as the additional boundary condition the tangential 
component of Eq. (6), then there will be no emer
gence at all of Cerenkov radiation from the me
dium into vacuum. 

Because of this it seems to us that the condi
tion (5) is physically unjustified. The condition (4), 
on the other hand, does not have this defect. It can 
be shown that the amount of Cerenkov radiation 
emerging into the vacuum has only a weak depend
ence on the constants a i that appear in the condi
tion (4). Therefore for a qualitative estimate of 
the emergence into vacuum of the Cerenkov radia
tion from longitudinal waves we shall use as the 
additional boundary condition the normal compo
nent of Eq. (6). 

3. THE RADIATION FIELDS IN THE VACUUM 

The radiation fields in the vacuum are found in 
exactly the way that has been described by 
Garibyan. 5 We present the results of the calcula
tion of the radial component of the electric field 
strength: 

00 

E' (R, 8, t) = e . e-3ni/4 I I (ffi) e-iwt dw, (7) 
P v:n:V2:n:R sm 8 _t 

00 

I (w) = ~ F (x) ef(x)R dz, (8) 
0 

where the notations used are 

F (x) = x'"f, 01'] (x)/~ (x), f (x) = ix sin 8 + i'A0 cos 8, 

( ) r.! w (e- i- 6k2) ( A A . l\w2 2) 
1'] X = 1-' c f1f1o e II T (;2 e .l X 

, (eA. II + tJk2kz eA. II l\k2w ) 
-:- e .l f1 (e -l\k2) -~-Gil~ ' 

~ (x) = Ow2c-2e.lx2 -!- eA 11 ('A+ e'A 0), 1.L = k2 - ffi2C-2 (e- Ok2), 

'A~ 1 = ejo- x 2 , w = kzv, ~ = vjc, (9) 

R is the distance from the point where the electron 
leaves the medium to the point of observation, and 
e is the angle between R and the z axis. The real 
and imaginary parts of A0, A, All are positive. For 
6 - 0 Eq. (7) goes over into Eq. (23) of reference 
5. 

Besides the pole JJ- ( K ) = 0 considered by 
Garibyan, 5 the function F ( K) that appears in 
Eq. (8) has a pole determined by the equation 
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(10) 

As Garibyan has shown, the residue at the pole 
Jl ( K) = 0 gives the Cerenkov radiation from trans
verse waves. It will be shown below that the resi
due at the pole (10) gives the Cerenkov radiation 
arising in the medium from longitudinal waves. 

The integral (8) is calculated by means of a 
formula of Vander Pol, 8 which takes into account 
the closeness of the pole to the saddle point. The 
result is as follows: 

ioo 

I (ro) =- 2 ('- ~)'/, F (x0)wef<x,)R-w' ~ eu'du, (11) 
, ·f (x0)R w 

where Ko = wc-t sine is the saddle point of the 
function f(K}; w = ±s0Rtf2; s5 =f(Ko)- f(Kt}; 
and K~ = E /6 - w2 /v2 is the pole determined from 
Eq. (10). The sign of the function w is chosen so 
that its values lie in the upper half-plane. The 
closeness of the pole to the saddle point must be 
taken into account for I w 12 ~ 1. For I w 12 » 1 we 
can expand the integral in Eq. (11) in powers of 
1/w, and thus get 

' r:>;rt \ 1/2 
I1 = ef(x,) (- ~--)- _) F (x0). (12) 

I f" (xo R 

When we deform the original path of integration 
with respect to K ( 0 - oo) into the path of steepest 
descent, for y = 0 and v2 ::::: 46w~ in a certain 
range of frequencies it is necessary to take into 
account the residue at the pole Kt· We shall as-

sume that the speed of the electron satisfies the 
condition v2 » 46w5. Then the frequency range in 
question is determined by the inequalities 

wi = ro~ (I + llro~jv 2 ) < (J) 2 < ro~ (I -'- bro~ajv2)= w:, (13) 

where a = 1 + {32 sin2 e. We have taken into account 
the fact that the influence of spatial dispersion is 
most important near the plasma frequency Wo. 
For the real part of E for w > w0 we have used 
the expression E0 = 1 - wij/w2• 

If the imaginary part of E, which determines 
the absorption, satisfies the condition 

(14) 

then we have I w 12 .$ 1 in a certain range of fre
quencies around w' which is determined by the 
conditions 

a 1 12 (a" 1 w 12\ --•;, 

a: = 0, ~ro <(I - i w l~-l'1' aw2 · )w' · (15) 

The first of these conditions gives the value of w', 

(16) 

for y = 0. If y ¢ 0, we get for w' a value close to 
the value (16). Using Eq. (16), we get for the sec
ond of the conditions (15) 

(17) 

The values of the integral (8) over the whole range 
of frequencies are as follows: 

I~+ Ia I, 

Here It is the steepest-descent value of the 
integral for I w 12 » 1, I2 is the value of the inte
gral for I w 12 ~ 1; and I3 is the residue at the point 
K t· In I2 the function w is taken with the minus 
sign, and in I2 with the plus sign. 8 For y = 0 the 
frequency w' coincides with w2• If we take the 
limiting value y ~ ( 6 2wVRc3 ) t/2 for values of R 
that are small but not in contradiction with the 
validity of the method of steepest descent 
( w0c-tR sin2 e » 1 ), then I2 becomes negligibly 
small and can be omitted. 

The calculation of the normal component ED_ 
is made in an analogous way. For the total radia
tion into the vacuum we have 

-t<D 

E' = ---"-cos 8 sin 8 \ ((!)_)'' ~ (xo) eiw(Wc-t) dw 
vnR .) \c, c, (xu) 

-::'D 

"'2e . 0 ·; - _r~ Sln ve-3~' 4 
vnVR 

--------------------------------

V--2~ ":• 2 x'/, 
-I'_ -~ e·--rti/4 \ E '(!)__ _1_ ef(><,)R-iwt dw. 

v nR sin 8 ) ~ vc s (x,) 
(18) 

It is easy to show that the magnetic field 
strength is H' = E '. The first term in Eq. (8) 
corresponds to It, the second to I2, and the third 
to I3• The choice of the sign of ( Kt - Ko) in the 
second term corresponds to the choice of the sign 
of the function w. The regions of integration have 
been indicated above. 

The third term in Eq. (18) represents the 
amount of Cerenkov radiation produced in the 
medium from longitudinal waves that emerge. 
into the vacuum.3 In fact, by expanding the func
tion in the exponent, we find that the field of fre
quency w is propagated at the angle ,J ( w}, 
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sinir(w) =cw-1 V e0/6-w2 jv 2 , (19) 

with the direction of motion of the electron. For 
the longitudinal waves the index of refraction is n 
= cw-1 ( E 0/6) 1/ 2 • By taking the condition for 
Cerenkov radiation in the medium and using the 
law of refraction, we get for J ( w) in the vacuum 
the expression (19). 

The energy flux dW /ds through unit area 
during the entire time of flight of the electron can 
be divided into three parts, corresponding to the 
three terms in Eq. (18) ( cf. also reference 5 ). 
The transition radiation, which corresponds to the 
first term in Eq. (18), is a spherical wave. The 
energy radiated into the solid angle dQ = sine de 
dcp with its vertex at the point where the electron 
passes out of the medium is given by 

00 

dW 1 ce' o • o (' 1 ( ffi ) 3 11 ( X0) \' 
-----;]Q= v'n' cos·Osm·B J \ -c~ \;(xo) dw 

0 <S\ 
{'! 

(the prime on the integral sign means that for 
values of R that satisfy the condition (14) an inter
val ±~ w around w' is excluded from the region of 
integration). For the radiation in the interval 
±~ w around w' we get 

w'+4.w ico 

X ~ I ( : r ~ &:':1 (xl- Xo) rw' ~ eu'du 1
2 dw. (21) 

w'-4.oo w 

As R increases the value of w increases. Then 
~w. and consequently also W2, go to zero, and we 
must integrate over the entire range of frequencies 
in Eq. (20). 

It must be noted that the condition for distin
guishing the second term in Eq. (18) is the same 
as that for distinguishing the third term, which 
corresponds to the Cerenkov radiation (v2 

:::: 46w5 ). From this we can conclude that the sec
ond term in Eq. (18) is a superposition of the tran
sition radiation and the Cerenkov radiation, which 
is produced near the boundary surface (at a dis
tance of the order of the wavelength). At large 
distances from the point where the electron comes 
out, this part of the radiation goes over into a 
spherical wave. For the Cerenkov radiation, 
which corresponds to the third term of Eq. (18), 
the energy emitted between cones of aperature 
angles 8 and 8 + de depends on the distance R 
and is given by the formula 

W 2 1j 

dW 4ce' \ (j)• I e j_ x ' 12 _a= --R - .. - --1 ef(x,)R cos (6- {} (w)) dw. (22) 
dO v2 • c2v2 (; (x1 ) 

w, 

In the case of passage of an electron from 
vacuum to a medium the radiation field in vacuum 

is determined in the same way, the only difference 
being that the poles do not affect the calculations. 
Thus there remains only the transition radiation 
W1; the amount of such radiation can be found from 
Eq. (20} by replacing v by - v. 

4. QUALITATIVE ESTIMATE OF THE RESULTS 

The case of motion of an electron from a me
dium into vacuum is interesting, since in this case 
besides the transition radiation there is Cerenkov 
radiation caused by the excitation of longitudinal 
waves in the medium. 

The parameter 6 that characterizes the spatial 
dispersion is of the order of the square of the 
Debye radius3: 6 ~ A.b = kT/47me2• Owing to this 
the condition v2 :::: 46w~ for the appearance of 
Cerenkov radiation can be written in the form v2 

:::: < v2 > ( < v2 > is the mean square thermal 
speed of the electrons in the medium). As is 
well known ( cf., e.g., references 1 and 2 ), the 
motion of an electron through a medium with speed 
satisfying v2 :::: < v2 > produces longitudinal waves 
( plasmons). In the following estimates we assume 
v2 » 46wt v/c = {3 « 1. 

In the absence of absorption ( 'Y = 0), we have 
W3 - oo for R-oo, which corresponds to the 
emergence of the Cerenkov radiation from a semi
infinite trajectory. The angular distribution is 
then determined by the law of refraction, Eq. (19). 

When there is absorption the pole (10) must be 
taken into account for angles that satisfy the condi
tion sin2 e > yc 2 /6w5. It can be seen from this that 
the Cerenkov radiation with the energy W3 will be 
emitted between the bounding surface and a cone of 
aperture given by sin2 8 ~ yc2 /6w~. Moreover, it 
will be exponentially damped with increase of the 
distance. 

For 'Y > 6w5 the pole (10) need not be considered. 
Both the emerging Cerenkov radiation and the tran
sition radiation will be determined by the single 
term W1o in which the integration is taken over 
the entire range of frequencies. For small values 
of 'Y ( 'Y « 6wE/c2 ), however, and values of R that 
are small but do not come within the zone of forma
tion of the radiation ( 62wVy2c3 ,G R » c/w0 ), the 
value of W3 is large. With this statement of the 
problem one cannot estimate the yield of Cerenkov 
radiation W3 (the radiation losses are comparable 
with the kinetic energy). 

Noting that both the spectrum (13) of the 
Cerenkov radiation and the range ~w of frequen
cies around the value w' of Eq. (16) lie in the 
neighborhood of the plasma frequency w0, let us 
use the following method to estimate the amount of 
Cerenkov radiation caused by the excitation of 
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longitudinal waves in the medium when an elec
tron passes through a plate. 

Let us take a plate that is "thick" enough 
for the formation in it of a wave corresponding 
to the frequency w0 (and for the "one-boundary" 
approximation to the problem to be justified for 
this frequency), but "thin" enough for the absorp
tion to be negligible. As Garibyan has shown, 6 a 
plate is thick if d » c/w0, where d is the thick
ness of the plate, and it is assumed that {:3 « 1. 
The absorption can be neglected for the longitu
dinal waves if d « 1/k(j. where k((. is the imagi
nary part of the wave vector of Eq. (2). At the 
frequency w' this condition means that d 
« Ci.JJ0/vy. For the plate thickness d to satisfy 
both conditions it is necessary for the imaginary 
part of E to satisfy the condition y « ow5/c2• In 
this case both conditions on the thickness of the 
plate can be satisfied. 

We can estimate the quantity W3 by calculating 
for an electron moving in the medium the energy 
loss per unit path length owing to the Cerenkov 
radiation from longitudinal waves, and multiplying 
it by the thickness of the plate. We shall not find 
the loss here, however, since it has been calcu
lated by many authors. The most exact calcula
tion of the energy loss per unit time of an electron 
moving in a medium has been made by Larkin. 2 

In our notation the formula is 

dEjdt = e2w~v-1 ln (vjw0 V6), (23) 

where it is assumed that v2 » 4ow5 (see also 
reference 1). Assuming that almost all of the 
energy radiated in the plate emerges into the 
vacuum, we get for the estimate of the quantity W3 

W3 ::::::::: e2w~v- 2 ln (v / W 0 Vb). (24) 

Comparison with the kinetic energy gives the 
ratio 

W 3 e 2 ffi~d v 
W K = mv• In ffio y;s . (25) 

Let us estimate the amount of Cerenkov radia
tion W 2 that arises at a distance of the order of a 
wavelength from the boundary of the film through 
which the electron emerges into the vacuum. For 
the given plate thickness (ow 0/vy » d » c/w0 ) 

we can use the expression (21) to estimate the 
quantity W2• If y satisfies the condition (14), we 
can distinguish w2 from the transition radiation 
at distances R0 in the range 

(26) 

Taking the integrand of Eq. (21) at the point w' 
given by Eq. (16) and multiplying by the frequency 

interval ~w of Eq. (17), we get for W2 the value 

. _ 4e2 ffi~ ~o, [ 2 (~)'l sin' e cos' 8 _ :CJ•;,I £ (ffi') I' w:l _ , R 26 R 4 . 8 d8, 
nv e, c 1 sm (27) 

where 81 and 82 are the roots of the radicand and 
ioo 

\6 (w') I =I e-w'(w') ~ eu' du j. 
·~(w') 

For a value of R0 that satisfies the condition (26), 
the expression (27) can be estimated in order of 
magnitude as follows, 

where it is assumed that ow5 Rj < v2 >. 
Taking the ratio of W2 to the kinetic energy 

of the electron, we find 

(27') 

(28) 

The ratio Ws/W2 is given in order of magnitude 
by 

W /w ffiuC d c2 1 
a 2::::::::: < '> ,r ~ -< ') V v r Roffio 1 c--" v Roffio I c 

(29) 

Though at small distances R0 the energy W3 

of the Cerenkov radiation is much larger than the 
quantity W2, still, as was pointed out above, its 
value falls off exponentially with the distance. On 
the other hand the part of the Cerenkov radiation 
that corresponds to W2 is converted at large dis
tances into an undamped spherical wave. 

We can estimate the value of y for which such 
a physical picture can be observed, by starting 
from the condition (14) and noting that the condi
tion Rw0/c » 1 for the applicability of the method 
of steepest descent must be satisfied. Assuming 
for dielectrics o ~ 10-16, w 0 ~ 1014 and taking 
Rw0/c ~ 104, we get the value y ~ 10-10 • For a 
plasma, assuming o ~ 10-6, w0 ~ 1010 , Rw0/c 
~ 102, we get y ~ 10-7• 

Assuming {:3 ~ 10-2, we get for the thickness of 
the plate the conditions 

I ~d~ I0-4 (dielectric) 103 ~d~ I (plasma) 
The quantity W2 of Eq. (27), like the W3 of 

Eq. (24), has a tendency to increase with de
creasing speed of the electron. In this case, 
however, the method that has been presented 
does not apply, since the radiation losses become 
comparable with the kinetic energy WK of the 
electron [the expressions (25) and (2 8) approach 
unity]. 

The transition radiation, which corresponds to 
the quantity Wt. has been qualitatively described 
by Garibyan. 5 Here we shall estimate its value 
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for {3 « 1 for comparison with the Cerenkov 
radiation from longitudinal waves. 

It is important to take spatial dispersion into 
account only in a frequency interval close to the 
plasma frequency w0• Since this frequency inter
val has been taken into account by the term W2, 

we can make the estimate of the transition radia
tion (20) by neglecting spatial dispersion. Then 
Eq. (20) goes over into the formula of Garibyan 
[ Eq. (28) of reference 5 ]: 

,;z 
W =c -~:._ dB sm cos-2 2?'' ~ . 3 0 ' () 

1 :n:c • (1 - ~' cos2 OJ2 
0 

co 
\ .· (e·-1)(1-[3' Jh-sin2(J) )2 dw, (30) 

X t ( (ecos 8 + fE -sin' 0) (t- f3 fe -sin' 0) 

Setting Eo = const ~ 1, Eo - 1 ~ 1 for 0 < w < w0 

and Eo = 1 - wij/w2 for w0 < w < oo, we get the 
following estimate: 

(31) 

It can be seen from a comparison of Eq. (31) 
with Eqs. (25) and (28) that for {3 « 1 the transi
tion radiation is much smaller than the emerging 
Cerenkov radiation that has been produced in the 
medium from longitudinal waves. 

In conclusion I express my gratitude to V. L. 
Pokrovski!, S. K. Savvinykh, A. P. Kazantsev, 
A. M. Dykhne, and I. A. Tilinskil for discussions 
and a number of valuable suggestions. 
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