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It is shown that the i criterion can be employed to investigate the azimuthal angular distri
bution of a small number of shower particles. The azimuthal angular distribution of second
ary particles in jets produced in photographic emulsions by cosmic-ray particles is analyzed 
by the proposed method. It is concluded that peripheral collisions of high-energy nucleons 
play an important role. 

A possible consequence of the two-center model 
of multiple particle production in collisions of fast 
nucleons is the azimuthal anisotropy of secondary 
particles. If the excited center has a large intrin
sic moment of momentum, then the emitted mesons 
have a tendency to be coplanar. 1•2 In addition, be
cause of the deflection of the emitting centers from 
the direction of the primary particles,3•4 an asym
metry can arise in the azimuthal angular distribu
tion of the particles of the diffuse and narrow 
cones observed in the laboratory frame of refer
ence ( l system). Koba and Takagi2 believe that 
the detection of an azimuthal asymmetry of shower 
particles exceeding the limits of simple statistical 
fluctuations would make the two-center model a 
very plausible one. The problem is all the more 
important since the distribution over the angle (} 
(the angle with the direction of the primary 
particle) characteristic of the two-center model 
is often of the order of natural statistical fluctua
tions. 5 

The azimuthal angular distribution of fast parti
cles produced in the collisions of nucleons with 
complex nuclei was studied using the Pearson 
criterion. 6 However, the existence of azimuthal 
anisotropy has not been proved. It should be noted 
that the use of the Pearson criterion is mathemati
cally sound only for a sufficiently large number of 
shower particles ns, 7 not less than 10 m, where m 
is the number of equal intervals into which we di
vide the azimuthal angle cp. It is shown below that 
it is possible to use the x2 criterion to detect the 
azimuthal anisotropy of secondary particles in the 
case of small ns if the small number of particles 
in each shower can be compensated for by a large 
number of showers. 

In the study of the particle angular distribution, 
the total azimuthal angle 27T is divided into m 
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equal intervals l:!..cp, and the number of particles 
m 

nk is calculated in each interval (:E nk = ns ). 6 
k=1 

As is well known, the quantity 
nl . " m 

, m 2] ( n, )" m ~ Xc = - nk ~ - = - n2 ~ n, m n m n k 
s k=l s k=l 

(1) 

has a x2 distribution with m - 1 degrees of free
dom, if ns is large, under the assumptions of 
azimuthal isotropy of shower particles and the 
statistical independence of their angles of emis
sion 'Pi in separate showers with a given ns. Let 
us estimate the mathematical expectation and the 
dispersion of this quantity for an arbitrary ns. 
We ascribe to each azimuthal angle of the i -th 
particle 'Pi m random values 'Pik (i = 1, 2, ... , 
ns; k = 1, 2, ... , m) satisfying the conditions 

lj)ik = 1' 

if 'Pi lies within the k-th among the m equal 
intervals ll.cp, and 

'Pik = 0, 

(2) 

(3) 

if 'Pi does not lie inside this interval. For such a 
definition of 'Pik• we have 

(4) 
i=l 

Taking the statistical independence of the angles 
'Pi into account, it is easy to find the mathematical 
expectation of the normalized value O!m 
=x~/(m- 1): 

m 

m 'l ( 1 )2 M (am)= 1 + m _ 1 (n,- 1) """ Pk- m , 
k=l 

(5) 

where Pk is the probability that a particle falls 
within the k-th interval ~cp. which fully determines 
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the distribution of <Pik· If the azimuthal angular 
distribution is isotropic, Pk = 1/m and 

M~~=l. (~ 

The calculation of the dispersion Oim is rather 
tedious. Omitting the calculation, we shall present 
the final result corresponding to the assumption of 
azimuthal isotropy of shower particles and statis
tical independence of their angles (,Oi= 

D(a)- _2 __ __!___2_ 
m -m-1 n m-1' s 

The fact that the value of the dispersion is 
finite makes it possible to find the critical limit 
for the quantity Oim averaged over n showers 

- 1 n 

elm= fi ~CXmi, 
i=l 

(7) 

(8) 

The probability that this limit is exceeded is very 
small. Denoting the probability of the correspond
ing event by P, we can write the Chebyshev 
inequality from Eqs. (6) and (7) as 

P ([am- 1\ > t VI>miVn) <I 1 t2 , 

- 2 (1) 2 
Dm = m- 1 - n m- 1 ' 

s av 
(9) 

where t is an arbitrary positive parameter. The 
more accurate Chebyshev inequality8 makes it 
possible to state that* 

P (a,m -1 > t VI>miVn) < exp (- t2 I 4), (10) 

if 

O<t<:3VDm Vnf[(n,)max-1]. (11) 

The Chebyshev inequality clearly results in a con
siderably greater value than the critical limit <im. 
In order to lower the estimate, we can use the 
Lyapunov theorem, whose limits of applicability 
are satisfied for a set of showers with a finite 
number of particles ns, e.g., for showers with 
energy smaller than a certain maximum value. 
Since, for a sufficiently large number of such 
showers, the distribution of the quantity "O!m can 
be regarded as normal, we can, for instance, 
claim from Eqs. (6) and (7) that 

00 

P (a,m- I > t VI>m I Vn) = (2:rt)-1
-'' ~ exp (- x 21 2) dx. 

i (12) 

For t ~ 2.5, the right-hand side of Eq. (12) is 
already less than 0.01. 

By means of the x2 criterion, we can study the 
azimuthal angular distribution of shower particles 
on the whole, independent of the angle e with the 

*Since the quantities <lm, similar to the quantities <X and 
<l', considered below, are finite, we have 0..;;;: <1m..;;;: n 8 • 

direction of the primary particle. In order to ob
tain information about the azimuthal asymmetry 
of the particles travelling at different angles e, 
we can use the quantity introduced in reference 9 

a= ns tan2 60 (cos 8)2 1 sin2 e 

cos e = ~ cos 8; 1 n,, sin2 6 = ~ sin2 6; In,, (13) 
i=l i=l 

where ei is the angle of emission of the i -th parti
cle with respect to the direction of the primary 
particle in the l system, (,Oi is its azimuthal angle, 
and e0 is the angle between the direction of the 
primary particle and the shower axis going through 
the center of gravity of the points of intersection 
of the secondary charged-particle tracks with a 
sphere of unit radius whose center coincides with 
the shower vertex.* By means of this quantity, 
we can solve the problem concerning the deflection 
of the excited centers from the direction of the 
primary particles in peripheral interactions of 
fast nucleons, since such a deflection leads to an 
increase in e0• 

Let f ( et> (,011 e2, (,02, ••• , ens• (,Ons) be the proba
bility density of a multi -dimensional distribution. 
Assuming the azimuthal isotropy of the angular 
distribution of each particle for an arbitrary e and 
for a fixed direction of the remaining ns - 1 
particles, the mathematical expectations of the 
quantity 01 and its dispersion are, respectively, 
given by 

n, 

M (a)=~ af (81, Cfli• 82, <p2, ...• en,. Cfln,) II d8;d<p; 
ns i=l 

= ~ af1 (81, 82, ... , 8n) II d8;d<p; I 2:rt = 1, (14) 
i=l 

D (a) =~[~.sin 81 sin ei cos (cp;- Cfli);· ] sin2 6;r 
l'FJ l=1 

i= 1 

= M [I - sin4 e Ins (sin2 8)2] < I. (15) 

Hence, it follows that the substitution 

Dm = I (16) 

leaves the inequality (9) valid for the quantity 
- 1 n 
a = n ~ a;. (17) 

i=l 

while the equality (12) becomes an inequality. 

*The factor n 8 (cos (J)2 /sin2 (J) in Eq. (13) is introduced for 
normalization [see Eq. (14) below]. 
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In a general case, where 

f (8~> cp~> 82, cp2, . · · , 8n,, cpn) 

= fi (81, 82, · · •, 8n,} f2 (cp1) f2 (<p2) · · · fz (<pn,), 

~ f 2 ( <p) d<p = I , (18) 

the mathematical expectation a differs from unity 
by the quantity 

M (o:)- 1 =aM [n, (sin 8)2/ sin28- lJ> 0, 

a= [M (cos<p)J2+[M (sin<p)]2. (19) 

Since the values of a are finite, we have for a 
sufficiently large number of showers with anum
ber of particles less than a certain maximum 
value, 

(20) 

The same properties as a are possessed by the 
quantity* 

o:' = n, tan 8~ j tan2 0 

= I + ~j tan 8, tan 8j cos (<p;- <pj) I ~1 tan2 8;, (21) 

where eo is the angle between the direction of the 
primary particle and the straight line going through 
the vertex of the shower and the center of gravity 
of the points of intersection of the secondary 
charged-particle tracks (or their continuations) 
with the plane tangential to the unit radius sphere 
at the point of intersection of this sphere with the 
continuation of the primary-particle track. The 
experimental values a' can easily be calculated 
using so-called target diagrams of shower particles. 

Before we analyze the experimental data by the 
above method, let us consider several factors 
which cause the mathematical expectations am, a, 
and a' to differ from unity. 

1. The energy-momentum conservatron law 
subjects the momenta of the particles and their 
directions to certain constraints which may affect 
the assumed independence of the 'Pi· e.g., in the 
case of the existence of a particle with a much 
higher energy and with a very large transverse 
momentum. t If the transverse momenta of sec
ondary particles are of the same order of magni
tude, then, if their number is large and if neutral 
particles are present, the influence of the energy
momentum conservation law is evidently small. 
However, if the transverse momenta of nucleons 
are much greater than those of 1r mesons, 10 and 
two nucleons do not have the tendency to be 

*We have in mind the equality (14) and inequality (15). 
tThis assumption does not correspond with experimental 

data. 

coplanar after their collision, then, for a small 
(~ 5) number of charged mesons, the mathematical 
expectations am, a, and a' may increase. 

2. As mentioned at the beginning of the article, 
for small deflection angles of the excited centers 
from the direction of the primary nucleon, an azi
muthal anisotropy of the secondary particle may 
arise, and the mesons will concentrate in the plane 
containing the momenta of the primary nucleon and 
of the isobar. Such an anisotropy will first lead to 
an increase of M (am) for m > 2, but will not 
greatly affect the mean values of a 2, a, and a' 
since the azimuthal angular distribution remains 
symmetric. It should be noted that, since the pri
mary particles are described by a plane wave, 
there will be no azimuthal anisotropy of shower 
particles in the set of the single showers which is 
characterized only by the same momenta of pri
mary nucleons but for which the concept of proba
bility has no meaning (see reference 2 ). The ten
dency of mesons to be coplanar will make itself 
felt as a statistical dependence of the angles q>i of 
secondary particles, which tends to increase 
M (am). We therefore believe that it is useful to 
differentiate sharply between the azimuthal ani
sotropy and the statistical dependence of the sec
ondary-particle angles. 

3. The presence of narrowly-correlated groups 
of particles in their angular distribution, originating 
from the decay of short-lived particles or isobars, 
tends to increase the mathematical expectations 
am, a, and a' [see Eqs. (1), {13), and (21) ]. The 
quantities M(am), M(a), and M(a') would be 
much greater than one if the fast moving "fire
balls" produced in nucleon-nucleon high-energy 
collisions were deflected from the direction of the 
primary particle, and if they had an isotropic dis
tribution of the statistically independent angles cp. 
If, as a result of a collision in the c.m.s., two 
nucleons excited in the same way and moving at 
large angles to the direction of the primary parti
cles are produced, then M (a 2 ) evidently will not 
increase, in contrast to the other quantities dis
cussed above which characterize the azimuthal 
angular distribution of shower particles. 

After these remarks, we shall use the proposed 
method for the analysis of experimental data on the 
angular distribution of shower particles obtained 
by J. Pernegr. The values of a, a', and am were 
calculated for 52 showers produced in emulsion by 
singly-charged cosmic-ray particles having ::::; 5 
strongly ionizing particles. The number of second
ary shower particles ns varies from 6 to 42, and 
the value of the Lorentz factor of the center-of-
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Experimental data on the azimuthal angular distribution of 
shower particles in 52 jets* 

Group characteristics n5 <:;12, n s =9.3, n=36 n, ;;.14, n,=19.5, n=16 

Azimuthal group -~<a:>, ~m) I o (a> ~~a~) I P,% a: (a:, O:m) I -~ la-111 P, % o (a) --=--
characteristics o (a) o (a) 

1 I 2 I 3 I I, 5 I 6 I 7 I 8 

Cl. 0,94 <0.17 - - I 1.07 <0.25 - -
ct' 0.87 <0,17 - - I 

1.04 <0,25 - -
C/.2 0.78 0.22 1.0 - 0.63 0.34 1,1 -
C/.3 0.91 o:16 - -

I 
1.80 0.24 3.3 <0.1 (<:;9) 

C/.4 0.80 0.13 1.6 -6 1,41 0.20 2:1 -2 
ct. 0.98 o:11 - -

I 
1.35 0.17 2:o -2 

cto 1,01 o;10 - - 1.68 0.15 4.4 <10-3 (<5) 
ct, 0.99 0,09 - -

I 

1.23 0.14 1,7 -5 
r:ts 0.91 0.08 1.1 - 1.37 0,13 2,9 -0,2 
r:to 1.05 0.08 - - 1.32 0,12 2.7 -.0.4 
CI.IO 0,98 0.07 - - 1.45 0,11 3.9 <10-2 (<7) 

*Only the values \Zi- 1\/a(Ci):;;;, 1 and of P < 10% are given. 

mass system Yc from 2.4 to 150. The values of 
a, a', and am calculated by us* for two groups of 
showers with small and large ns respectively are 
presented in the table (columns 1 and 5 ) . Columns 
2 and 6 show the values of II, the standard deviation 
of the quantities a, a', and am calculated assum
ing azimuthal isotropy of secondary particles and 
statistical independence of their angles 'Pi· When 
these conditions are satisfied, the probabilities P 
that a (a', am) are not smaller or not greater 
than an observed value can also be calculated 
using the Lyapunov theorem. The corresponding 
data are shown in columns 4 and 8 of the table; in 
the parenthesis, the values of P obtained by means 
of the Chebyshev inequality are shown. 

Experimental data for groups of showers with 
ns ::::: 12 agree, within the limits of error, with the 
assumptions on the azimuthal isotropy of shower 
particles and the statistical independence of their 
angles cpi. However, for large ns, the values of 
am averaged over 16 showers are considerably 
greater than unity if m 2:: 3. This increase in am 
cannot be due to the influence of the energy
momentum conservation law, since no increase in 
the quantities a, a', and a2 is observed in this 
shower group and, in addition, such an influence 
should be even stronger for smaller ns. The de
viation of the excited centers from the direction of 
primary nucleons, if it exists at all, also does not 
exhibit any marked influence on the azimuthal 
angular distribution of secondary particles, since 
the values of a and a' are close to unity. 

The experimental data of showers with ns 2:: 14 
points towards a symmetrical but anisotropic azi
muthal angular distribution of secondary particles 

*Azimuthal angles are measured from the plane perpendicu
lar to the emulsion plane. 

in individual showers, and the symmetry is appa
rently conserved for any angle 8. The tendency of 
the emitted mesons to possess an azimuthal anisot
ropy might possibly also be observed for smaller 
ns. In that case, however, the mathematical expec
tations O'm according to Eq. (5) cannot be great. 
In addition, for a small number of particles, the 
influence of the energy-momentum conservation 
law may be felt, causing a decrease of the mathe
matical expectations of the quantities under con
sideration. 

The experimental data given above contradict 
the hydrodynamical theory of jet production in 
head-on collisions for a cylindrical symmetry of 
secondary particles, and indicate a considerable 
role played by peripheral collisions. The data of 
the table correspond to the emission of mesons 
mainly around the plane perpendicular to the direc
tion of the intrinsic moment of momentum of the 
excited center. This fact was predicted theoreti
cally as a consequence of the two-center model of 
multiple particle production in nucleon-nucleon 
high-energy collisions. 1•2 For its confirmation, 
additional statistical material is necessary. 

In conclusion, the author wishes to express his 
gratitude to S. A. Azimov, M. I. Podgoretski'i', and 
D. S. Chernavski'i' for helpful comments, to J. 
Pernegr for supplying the experimental data, and 
to G. M. Chernov for his help. 
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