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A system of non-interacting electrons in a lattice is considered. In the single-band approxi
mation the changes of energy and thermal capacity of this system when defects are formed 
are calculated. 

IN the theory of local perturbations in crystals the 
most important problems are, on the one hand, 
finding the discrete levels and the scattering prob
lem, 1 •2 and, on the other hand, the calculation of 
the changes in the various thermodynamic quanti
ties. The latter problem was first posed and 
solved in the general case by I. Lifshitz3 (see also 
references 4 and 5 ). 

We consider the change of the electronic energy 
of a crystal when defects are formed. This prob
lem is of particular interest in connection with the 
possibility of thus finding the contribution to the 
electronic thermal capacity of the crystal made by 
lattice defects. We use the one-electron approxi
mation, and neglect electron interactions. We 
write the Schrodinger equation for the wave func
tion of an electron in an ideal lattice as 

(1) 

H0 includes the kinetic energy and the periodic 
potential averaged over the lattice, lf!k is a Bloch 
function. We limit the spectrum of Ek to one band. 

For a lattice with a defect we have 

(2) 

Here V is the perturbing potential localized about 
the same point r 0; Ek and <Pk are the perturbed 
eigenvalues and eigenfunctions. 

Our problem consists in calculating the energy 
change of the electron system ~E. which, using 
the invariance of the trace of operators, we will 
write in the form 

1'1.£ = Sp {D (H0 + V)- Q (H0 )}, (3) 

Q (e)=- kT In (1 + e<P.-•l/kT), (4) 
where J-1. is the chemical potential, T is the tern
perature, k is Boltzmann's constant. If PE and 
Pe (the projection operators into the states lf!k 
and <Pk) are introduced, then 

(5) 

The trace of the difference of projection opera
tors has been calculated in the case of a degenerate 
regular perturbation by I. Lifshitz. 3 We use for 
the perturbation operator the first order approxi
mation. With this aim we expand lf!k, normalized 
to a o -function, in terms of the Wannier functions 
an(r), localized at the lattice sites: 

(6) 
n 

The diagonal matrix elements of V in lf!k space, 
which are of interest to us in this approximation, 
will have the form 

('¢k IV I 'rk> c (27!)-3 2J (an IV I an·) eik <n-n'>. (7) 
n,n' 

Limiting ourselves to the largest of all the ele
ments <an I VI an'> 

a= (2nr 1:x 0 = (2nt:1 (an, IV I an,) 

(no is the site closest to r 0 }, we obtain 

<'h IV I 'I!Jk> = :x. 

(8) 

(9) 

It is now possible to use the results of reference 
3 for the case of a one-dimensional first-order 
perturbation. We have 

Sp(P.-P~) = ~arg(l _j__ \' • c(f') 0 de'), 
J't · \ ,, B-E-t 

c (e)= (10) 

The last integral is taken over a surface of con
stant energy, dw is the element of its area. 

The Stieltjes integral (5) gives 

1'1.£ = 2[D (e0)- Q (eg)] + + ~ tan- 1[nac (e)/( I 

+ aP ~ e~ ~·~ de') J Q' (e) de. (11) 
Here the spin degeneracy has already been taken 
into account, and the level of the localized state E 0 
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is determined from the equation 

I -+ex~ dec (e)/(e -- e0 ) -= 0; (12) 

Eg is the upper or lower edge of the band, depend
ing upon the sign of a. 

The possibility of approximating by a one
dimensional perturbation has no rigorous founda
tion, but we shall establish a criterion for its ap
proximate feasibility. To do this we note that for 
sufficiently small values of a (in the three
dimensional case) Eq. (12) has no solutions at all, 
there is no localization due to the perturbation, 
and, consequently, the approximation is demon
strably inapplicable. 

In order to obtain a more accurate estimate we 
write 

~ dwj I V'ek I= ~ 6 (ek-e) dk. (13) 
E.k=E 

It then becomes possible to introduce a new func
tion 

I, (n- n') = (2nr3 P ~ dke'k <n-n'>j(ek- e- iO), (14) 

which is the Green's function in the discrete space 
of lattice sites. We have 

Re /, (0) = (2nr 3P ~ de'c (e')/(e'- e), 

ImJ. (0) = (2nr2c (e). (15) 

If we now consider that (in the three-dimen
sional case) Re IE ( 0) is continuous through the 
boundary of the spectrum and attains a maximum 
(minimum) at it, then it is possible to write down 
the inequality 

lfcx<P~de'c(e')j(e'-eg). (16) 

We write E = E0 + ,Bf(k), where k is the quasi
momentum, and ,B determines the energy width of 
the band, then 

I jcx0 < constj~. (17) 

The constant appearing here has a value of the 
order of unity. Thus, our approximation is most 
justified when 

(18) 

We now turn to a study of the contribution of a 
small number of defects 11 to the electronic heat 

" capacity at low temperatures. As is easily veri
fied, the localized electrons give an exponentially 
small contribution and can, therefore, be ignored. 
For the energy change we find in the usual way6 

11£ = 11£o -j- ~ l] (kT)2 (])' (EF) (lJ (e) =tan-1 cto Im I, (0) . 
' 1 + ct0 ReI, (0) 

(19) 

Here EF is the Fermi energy, AE0 is the energy 
change at T = 0: 

'F 
l1£ _ 2 ( . ) , 2 \ -1 C1o I m I, (0) 

o- eo- cg --;-:I .\ tan 1 + cto ReI, (0) de. (20) 

It must be pointed out that, in fact, in the nature of 
the problem, the integrals in (15) are taken over 
the unperturbed spectrum, but the integral in (20) 
over the perturbed. This becomes of particular 
importance near to the edges of the unperturbed 
spectrum, where it is not permissible to expand in 
terms of ,B / a0 (see reference 7 ) . In addition the 
relationships obtained are only valid when the band 
is not too full, because otherwise it is impossible 
to use the procedure of extending the integrals over 
E from the distribution function to infinity. We do 
not consider here the complicated processes when 
there is a gap between two bands. 

Thus we have, for the contribution to the heat 
capacity, 

11c = f (nk)2CX0l]T 

X [Im I, (0)]' + cto {[lm/, (U)]' Ref, (0)- [Ref, (0)]' Im/, (0)) 

[cto Iml, (0)]' + [1 + ct0 Re I, (0)]2 (21) 

We note that Im IE ( 0) and Re IE ( 0) possess 
characteristic singularities in their first deriva
tives at the boundary of the unperturbed spectrum. 

When the inequality (18) is satisfied, the quantity 
D.c ceases to depend on the perturbation, and we 
obtain 

11c = f (nk)2l]T<P0 (eF), 

<1>0 (e)= {[lm/, (0)]' Ref, (0)- [Re/, (O)]'Im/, (0)}/ [ J, (0) [2 

(22) 
In the other limiting case (,B » a 0 ), provided 

the first order approximation remains applicable 
(for example, with modified ati), we find 

11c = f (rrk) 2cx~f) [lm/,F (0)]' T. (23} 

These two possibilities are realized, apparently, 
in dielectrics and metals. 

The author takes the opportunity to express his 
gratitude to Prof. I. M. Lifshitz for a number of 
valuable discussions. 

1!. M. Lifshitz, JETP 17, 1017 (1947}. 
2!. M. Lifshitz, JETP 17, 1076 (1947}. 
3 !. M. Lifshitz, Usp. Mat. Nauk 7, 171 (1952}. 
4 M. G. Krein, Matern. Sbornik 33, 597 (1953). 
5 !. M. Lifshitz, Nuovo cimento 3, Suppl. 4, 716 

(1956). 
6 L. D. Landau and E. M. Lifshitz, CTaTKCTK'lecKa.ll 

!\JK3KKa (Statistical Physics}, Gostekhizdat (1951}. 
7!. M. Lifshitz and G. I. Stepanova, JETP 30, 

938 (1956}, Soviet Phys. JETP 3, 656 (1956}. 

Translated by K. F. Hulme 
25 


