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To determine the integral of a vector function in Riemannian geometry, and a vector field 
corresponding to a displacement of the origin of coordinates, a geometric operation of 
"harmonic" translation of the vector is introduced, which is defined in a unique manner by 
means of the first-order generally-covariant linear differential equations (13). The covari
ant vector components do not change during harmonic translation in a harmonic coordinate 
system, and this enables one to integrate the vectors by components. Therefore the energy
momentum vector, energy-momentum pseudotensor, energy density, and Hamiltonian of the 
system should be computed in a harmonic system. For the canonical energy-momentum 
tensor a unique expression is obtained which goes over to the Landau-Lifshitz pseudotensor 
after symmetrization. 

1. STATEMENT OF THE PROBLEM 

TWO points are unclear from a mathematical 
point of view about conservation laws in the gen
eral theory of relativity: 

1. The definition of an integral over a vector 
function. In the energy-momentum vector of a 
system1 

(1) 

the expression under the integral is a vector. 
However, the operation of addition of two vectors 
at different points in space is not defined. 2 It is 
true that the generalized Stokes theorem3 is 
treated in differential geometry; however, the inte
grand in the generalized Stokes theorem is a scalar 
( skewsymmetric differential form). 

2. The conservation laws are a consequence of 
invariance under a continuous group of coordinate 
transformations - displacements or rotations.4 

If owj are the parameters of an element of this 
group in the neighborhood of unity, then the corre
sponding coordinate transformation has the form4 •1 

{)xi= si (x) = x~(x) {)u/, 

however, it is not defined which functions ~i (x) 
correspond to displacements. 

(2) 

Integrals of type (1) arise in the general theory 
of relativity in investigations of the conservation 
laws. If tl<: is the energy-momentum pseudotensor, 

1 
and the summation (integration) is carried out 
component-wise, while the coordinates are 
Euclidean at infinity, then the integral does not 
depend on the coordinate system. Similarly, if 
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the quantities ~ i tend to become constant as xO! 
- oo, the integrals of the different energy
momentum tensors generated by (2) agree with 
each other. However, it is an unsatisfactory sit
uation when mathematical operations are used 
which are not defined, and which acquire meaning 
only through the physical nature of the integrand. 
In our opinion the definitions of the integral and of 
the displacement are purely geometrical ones, 
and should be given independently of the physical 
content of the problem. 

There are two points of view about this possi
bility: a) a covariant definition of the integral and 
the displacement is possible in the general theory 
of relativity, b) a generally covariant definition of 
the integral does not exist in a Riemannian space. 
In the present work we develop the first point of 
view for an isolated mass distribution, when the 
metric becomes Euclidean at infinity. 

2. FREE-VECTOR FIELDS 

In arbitrary curvilinear coordinates only vec
tors defined at the same point can be added. 
Therefore before performing the integration, all 
vectors must be transferred to one point, which we 
shall call the observation point x0• It is then 
natural to define the integral by 

P; (x0) = ~ dP; (x, x0) = ~ t7 (x, X 0) dSk. (3) 

The integration in (3) is to be carried out over the 
points with coordinates x. 

Consequently we must define an operation of 
transfer of a vector, which we shall call "harmonic" 
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translation,* and which has the following proper
ties: 1) The "harmonic" translation is unique and 
consequently must not depend on the path; 2) it is 
defined by a generally covariant linear differential 
equation of first order; 3) In Euclidean space the 
''harmonic'' translation is identical with the usual 
parallel transport. 

An arbitrary vector Pi (x0 ) which is given at 
some point can be transferred to any other point 
with the help of the harmonic translation. It thus 
defines a vector field Pi (x): 

(4) 

where C denotes the operator of harmonic trans
lation. Thus condition 1) implies the existence of 
the vector field (4), which we may call a field of 
free-vectors. 

We now turn to Eq. (2). By the ~i (x) in (2) we 
now mean a vector field that satisfies the following 
conditions: (a) ~i (x, x0 ) is a unique function of 
two points, the field point x, and the point x 0 from 
which the translation originated; (b) in Euclidean 
space the vectors ~ i ( x) are parallel to each 
other. Clearly these conditions are satisfied by 
the field 

(5) 

Thus both problems posed in Sec. 1 have been re
duced to a single geometric problem, that of find
ing the harmonic translation. 

The harmonic translation must be defined 
uniquely, at least in topologically Euclidean 
spaces. It should be stressed that the harmonic 
translation differs from the parallel transport (II 
transport), which is defined by somewhat different 
conditions: a) II transport conserves the scalar 
product 

(6) 

b) In Euclidean space the II transport is the usual 
parallel transport. 

3. DEFINITION OF HARMONIC TRANSLATION 

Consider first Euclidean space and .introduce a 
Cartesian coordinate system. In this case the 
free vector clearly has constant components: 

aps (x)jaxk = 0; s, k = 0, I, 2, 3. (7) 

Equation (7) is of first order; therefore it is 
natural to demand that in the general case the 
harmonic translation also be defined by differen
tial equations of first order. These equations 
must be linear: if d and d are two vector fields 

*This nomenclature was suggested by V. A. Fock. 

corresponding to a displacement of the origin, 
then the sum of these fields must correspond to a 
displacement of the origin by the vector d (xo) 
+ d (x0 ). The requirement of linearity also fol
lows from the linearity of the operation of inte
gration. 

In curvilinear coordinates in pseudo-Euclidean 
space, Eq. (7) takes the form 

'\hP 5 (X) = 0, (8) 

where Vk denotes the covariant derivative. ps ( x) 
is obtained by integrating Eq. (8); to do this, boun
dary conditions must be imposed, namely bounded
ness at infinity. 

Let us study Eq. (8) in Riemannian geometry. 
Since the indices k and s are independent, Eq. (8) 
constitutes 16 conditions. If (8) is fulfilled, the 
curvature tensor vanishes because of the non
commutation of the covariant derivatives, 

(V" Vs- VsVk) Pi(x) = Rfi.sPm = 0. 

In the general theory of relativity condition (8) 
must therefore be replaced by weaker ones, 
which can be fulfilled even when R~s ¢ 0. 

From the second-rank tensor VkPi one can 
construct the invariant 

(9) 

(10) 

and introduce the symmetric and skewsymmetric 
parts 

£ik = \ihPi + ViPk, 'llik = VkP;- V;Pk. (11) 

Thus the following generally covariant condi
tions can be imposed on the vector field Pi (x): 

£;k = 0 (10 conditions). (12) 

These conditions have been investigated by Fock. 5 

They can be fulfilled only in spaces of constant 
curvature, V sR = 0, and therefore must be rejected. 

~ = 0, 'llik = 0 (7 conditions). 

These conditions can be fulfilled for arbitrary 
Rre_s. The solution of Eq. (13) is 

P" = V"<p = a<p;ax"; o c:p = o. 
At the point x0 we must have 

a~\ = Pk (xo), 
ax X=Xo 

in order that 

(13) 

(14) 

(15) 

(16) 

To calculate the integral (1) one must translate 
the integrand harmonically from the field point to 
the point x0• Hence Eq. (14) must be integrated 
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for every field point x. This is a rather cumber
some operation. 

In Euclidean space a vector with vanishing curl 
and divergence, and bounded at infinity, is constant. 
Therefore the requirement (2) for ''harmonic'' 
translation is also fulfilled. In Euclidean space 
the harmonic translation is identical with parallel 
transport. The definition of harmonic translation 
introduced above is feasible only if one confines 
attention to first-order linear differential condi
tions. 

4. A PREFERRED COORDINATE SYSTEM 

Up to this point all equations were generally 
covariant. In Euclidean space a "preferred" 
coordinate system exists, namely, a Galilean 
system, in which the components of a vector re
main unchanged during parallel transport. In this 
coordinate system addition and integration of vec
tors at different points can be performed compo
nent-wise. In the present section such a preferred 
system will be defined for spaces of arbitrary 
curvature. 

Let us find the conditions that define the class 
of coordinate systems in which the components of 
a covariant field of ''free'' vectors [in the sense 
of Eq. (13) ] are constant: 

P; (x) = CP;(x0 ) = P; (x0). (17) 

Consider again Eq. (14). We have 
1 a -- aPk 

div P = D c:p = ,,---..,. (V- g g'"Pk) = o, -. = o, (18) 
r- g ax' . ax' 

hence 

Condition (19) defines the class of "harmonic" 
coordinate systems. 5 Subject to corresponding 
boundary conditions, these systems are defined 
uniquely up to Lorentz transformations. 

(19) 

We note that the components of a contravariant 
vector do not remain constant after the translation: 

One can show that in general no coordinate sys
tems exist in which the contravariant components 
remain constant under harmonic translation. 

In this section we have found the "preferred" 
coordinate system for a covariant vector. We 
write the word "preferred" in quotes since we 
mean by this only that addition of vectors at dif
ferent points can be performed by components in 
this coordinate system. Thus in arbitrary coordi
nate systems the translation is generally covari
antly defined by Eq. (13). In a harmonic coordinate 

system these differential conditions can be inte
grated and lead to formulas (17) and (20). 

The situation with respect to "preferred" coor
dinate systems in the general theory of relativity 
is entirely analogous to the situation in electrody
namics. The equations of electrodynamics can be 
written down and solved in an arbitrary coordinate 
system. The calculation of integrals over vectors 
or tensors is carried out in the "preferred" 
Galilean coordinate systems, where vectors can 
be added by components. 

The class of harmonic coordinate systems has 
been thoroughly investigated. 5 In particular, the 
uniqueness proof for harmonic translation reduces 
to the uniqueness proof for harmonic coordinates. 
This question was investigated in detail by Fock 
(see reference 5, Sec. 93 ), and we shall not treat 
it here. The question of the existence and unique
ness of the solution of Eqs. (14) and (15) and the 
precise mathematical formulation of boundary con
ditions in finite-sized regions or in a space of non
Euclidean topology will not be considered in the 
present paper. 

5. CONSERVED QUANTITIES 

So far our reasoning was purely geometric in 
character and the formulas we developed were 
considered independent of the physical nature of 
the vectors. Consider now an integral of type (1) 

P; (x0) = ~ t~dSk = P; (x0 , cr), (21) 

where the integration extends over a hypersurface 
a. The integrand is a function of two points: the 
point x0, where all vectors are collected and where 
their component-wise summation is carried out, 
and the variables of integration, x. As was pointed 
out in Sec. 4, to be able to integrate by components, 
we must use a harmonic coordinate system. 

The vector Pi (x0, u) is said to be conserved if, 
for fixed x0, it does not depend on the hypersurface 
a. It is usual to require that Pi be independent of 
the hypersurface of integration; the stipulation 
concerning a fixed x0 is necessary in general 
relativity, where measuring rods and clocks may 
change from point to point, i.e., where the units of 
space and time measurement, and, consequently, 
any units in which Pi is measured, may change. 
We note that the point x0 may also lie outside the 
hypersurface u. 

It follows immediately from the definition of 
conserved quantities that the tensor tf satisfies 
the condition 

(22) 
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Formula (22) is a consequence of integration by 
components and therefore is correct for non
translated quantities only in harmonic coordinates. 

6. INFINITESIMAL COORDINATE TRANS
FORMATIONS 

Conservation laws are a consequence of the in
variance of the action under infinitesimal coordi
nate transformations. Let the action be expressed 
by the integral 

S = ~:ld4x, 2 = 2o V -g, (23) 

where the Lagrangian density :£0 is a function of 
the field variables and their first derivatives: 

GJ GJ ( A. A) A A k 
clJQ = clJQ uk ' u.k ' u.k = au ;ax (24) 

and does not contain the coordinates x explicitly 
(the index A denotes the totality of the tensor 
indices of the field). Consider the infinitesimal 
coordinate transformation 

~i (x) = xj (x, x 0 ) ~i (xo), (25) 

corresponding to a displacement of the origin x0 

by the infinitesimal vector ~j (x0 ), which charac
terizes the direction of the displacement. 

The change of the field functions at some point 
in space will be1•4 

(26) 

Here o*uA is the variation of the field function at 
the original point in space, which has new coordi
nates after the transformation, ljJ.i\ is the matrix 
that relates total variation of the1field variables 
(due to polarization properties as well as due to 
the displacement to the new point) with the dis
placement of the origin. 1•2•4 The canonical energy
momentum tensor is then defined by the relation 
by the relation 

k . •A A k" 
fJj (X, Xo) ~I (Xo) =- ~ U a:tjau.k- :fXj~l (Xo) (27) 

and satisfies Eq. (22): 

aeJ;axk = o. 
The integral over the hypersurface 

\ k PJ(Xo, o) = J fJi dSk 

(28) 

(29) 

is conserved. The integration in (29) is carried 
out component-wise. The quantities ®~ in Eqs. 
(28) and (29) are referred to the obserJation point 
xo, where x 0 may be located anywhere, not only at 
infinity. 

The physical significance of the relationships 
obtained in this way depends on the coordinate 

transformation being considered. If one adopts 
the point of view expressed above, that the coor
dinate transformation corresponding to displace
ment or rotation must be uniquely defined, then the 
tensor ®~ will also be unique. 

J 

7. THE GRAVITATIONAL FIELD 

The general formula (27) is correct for an 
arbitrary field. Let us apply it to the gravitational 
field. The simplified action for the gravitational 
field is 

(30) 

According to Sec. 4, the operation of harmonic 
translation can be written in a finite, non-differ
ential form only in a system of harmonic coordi
nates. Therefore :£0 should also be calculated in 
harmonic coordinates. The second term in (30) 
the vanishes, and 

(31) 

Since harmonic coordinates form an affine 
group, :£0 is a true scalar in harmonic coordinates. 
The components of the metric tensor gik are the 
field variables. The quantity ®~ (x) is the energy 
density of the system, or the Hamiltonian density. 
We note that Dirac6 has pointed out the necessity 
of fixing the coordinates for a Hamiltonian formu
lation. 

For infinitesimal coordinate transformations2 

we have 

(32) 

where ~i is defined by Eq. (2). In the literature 
the case ~i = const is usually discussed, and the 
coordinate system is not restricted. This leads 
to Einstein's canonical pseudotensor 

~~ = g'11 a;;e;ag'J/- :£~~. (33) 

However, the vector field ~i = const cannot be de
fined generally covariantly by means of first-order 
differential conditions. 

We demand that the vector field ~i (x) be de
rived from the vector of the displacement of the 
origin ~i (x0 ) by harmonic translation. In har
monic coordinates 

(34) 

The change in field variables must be calculated 
from Eq. (32): 

• "k "k I · 
~ g' = - 2 r' ' (X) glj (Xo) ~I (Xo), (35) 

so that the energy-momentum tensor equals 
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The infinitesimal coordinate transformation 
(34) can be written in the form 

~/ (x) = gis (x) £,, £, = const. 

(36) 

(37) 

As Bergmann7 showed, the transformation (37) 
leads to a tensor tks which, after addition of a 
strictly conserved quantity, becomes the tensor of 
Landau and Lifshitz. Thus the geometrical defini
tion of the displacement leads to the tensor of 
Landau and Lifshitz, and not to that of Einstein. 

As follows from the derivation, the quantities 
tf and, consequently, the Hamiltonian6 must be 
calculated in harmonic coordinates. Therefore the 
question raised again recently by M!iller about the 
localization of the energy-momentum of the gravi
tational field makes sense, although, in our opinion, 
M!iller's solution is wrong. Consider two mechani
cal oscillators much less than a wavelength apart, 
so that oscillation of one excites the other via 
gravitational interaction. The energy transfer 
calculated in the nonrelativistic approximation, 
using the canonical symmetric tensor, agrees with 
the result obtained from the equations of motion; 
the same calculation using M!iller's tensor gives 
a zero result. For the Schwarzschild solution, 
M!iller's energy density vanishes in any coordinate 
system, whereas the canonical energy density in 
harmonic coordinates is positive definite. 

The principal objection against the Landau
Lifshitz energy-momentum tensor was, of course, 
the incorrect weight. 8 •9 However, it is clear from 
Eqs. (33) and (36) that the canonical tensors have 
the same weights. Goldberg's conserved expres
sions of arbitrary weight are not connected with 
infinitesimal coordinate transformations and must 
be rejected. 

8. THE GRAVITATIONAL FIELD AS A 
PERTURBATION 

Let us analyze the case when the gravitational 
field can be considered a small perturbation, and 
compare the results of calculations in different 
coordinate systems. It is well known that the 
scattering angle of light in a centrally-symmetric 
field is given by 

(38) 

where R is the distance of closest approach, 
which in general relativity depends sensitively on 

the coordinate system employed. 1° From (38) we 
obtain for the effective scattering cross section, 
for () « 1: 

da = ~~~-/ ~ri J do'=' 16 (": / ~~ . (39) 

There is a difference in principle between Eqs. 
(38) and (39). The latter depends only on the scat
tering angle e, which is measured away from the 
gravitating masses, at infinity, where the metric 
is Galilean, whereas (38) contains the distance of 
closest approach, a quantity measured near the 
mass. 

Let us find the effective scattering cross sec
tion using the methods of quantum-mechanical 
perturbation theory. The Lagrangian density for 
the electromagnetic field equals 

:£ = J:._ p2k = __!__ gisgkm F "k F 
8:n: ' 8:n: ' sm· 

(40) 

For a weak field we have, in the notation of refer
ence 2, 

X= Xo + f:..X = 8~ F,.kpik + 4~ h~Fimp,.k· (41) 

The second summand in (41) can be considered as 
the interaction Lagrangian of the electromagnetic 
and gravitational fields. In (41) the indices are 
raised and lowered with the zero-order metric 

(0) 
tensor gik· 

The small additions to the Lagrangian and Ha
miltonian have opposite signs: 2 

For a weak gravitational field in harmonic 
coordinates we have 

h~= 0, 

(42) 

(43) 

where cp is the gravitational potential. Thus we 
find, for a light wave 

Mf£ = 4~c2 <p (P + H2) = :. 8~ (E2 + H2). (44) 

The quantity ( E2 + H2 ) /81rc2 can be treated like 
an inertial and gravitational mass density of the 
photon. The factor 2 corresponds to the well
known fact that the angle of deflection of light in 
the general theory of relativity is twice as large 
as in the special theory. 

We shall consider the interaction Hamiltonian 
(44) as a perturbation, where for Fik we must 
substitute the wave functions in zeroth order, 
namely plane waves. If we let the normalization 
volume be Q, we find the normalized wave func
tions: 
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E = V 4:rtnwjQ ekeikr, 

2 tu.o \ . S:n: xAf liw (4 ) 
(!'J.:Jf12) = C2 Q j exp {t (k1 - k2) r} dv = -g -;;;r- k"(J" , 5 

and we can easily see that the scattering cross 
section agrees with the classical result: 

2:n: ' 2 Q• 2 dk d - 16 ('xM)2 do • 
dri = Tic ( !'J.:Jf 12> (2:n:)" k 1i dw 0 - c" a• (46) 

The whole calculation could have been performed 
by perturbing the wave equation. The quantum 
notation was used only for brevity and because it 
is more familiar. 

We show that <t.:Je12 > depends on the coordi
nate system chosen. When applying perturbation 
theory one must use plane waves as wave functions 
in the zero-order approximation. In flat space and 
Galilean coordinates hik = 0 and <;;e12 > = 0. 
After an infinitesimal coordinate transformation 
we have 

1 co) .co) I 
b < !'!. :Jf12 > =- 4 Fm' F~z ... j ei(k,-k,)r (yo;£~<+ V~<£;) dV =I= 0, 

:n: (47) 

and, therefore, an arbitrary coordinate system 
does not satisfy the correspondence principle, and 
we must use the harmonic system for the calcula
tions as we have concluded above. 
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