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It is shown that the expression for the stress tensor of a variable electric field in a transpar
ent dispersive medium is the same as the usual expression for a nondispersive medium. It is 
also shown that if the parameters of the medium are time-dependent an imaginary part appears 
in the dielectric susceptibility, which is a real quantity for time-independent parameters. An 
expression is derived for the stress tensor of a variable electric field in a transparent liquid 
located in a constant magnetic field. 

1. THE STRESS TENSOR OF A VARIABLE 
ELECTRIC FIELD IN A TRANSPARENT 
LIQUID DISPERSIVE MEDIUM 

IN the present work we investigate the form of 
the stress tensor of a variable electric field in a 
transparent liquid dispersive medium. We are 
interested here, of course, in the average of the 
tensor over an oscillation period of the field. As 
is well known, the stress in a dielectric placed in 
a constant electric field is given by the Maxwell
Abraham stress tensor. For an isotropic liquid 
it has the form 

(1) 

Here Po= p0(p, T) is the pressure in the liquid in 
the absence of the electric field as a function of p 
and T, E is the dielectric susceptibility of the 
liquid, and p is its density. The derivation of (1) 
is based on the expression for the energy density 
of a constant electric field in a dielectric, 

D2 e£2 u = u 0 + -.;--- = u 0 + -8-' one n (2) 

Here U0 is the energy density in the absence of the 
field. 

Let us now consider a liquid dielectric whose 
dielectric permittivity is a function of the fre
quency of the field. Let it be located in an elec
tric field which varies with a frequency at which 
the dielectric is transparent, i.e., such that E ( w) 
is a real quantity. A typical example of such a 
medium is an electron plasma at w » 11 ( 11 is the 
effective collision frequency ) . The expression for 
the time average of the energy density of the elec-

tric field in such a medium is different from (2), 
and contains the derivative of E with respect to 
w (see reference 1): 

U _ U _L dwe E" (3) 
- 0 1 dw 8n · 

One might naturally expect additional terms con
taining dE/dw to appear in this case in the ex
pression for the stress tensor. However, we 
shall see that this is not so, i.e., that the stress 
tensor in this case is given by expression (1), but 
is averaged over the time. 

For a proof of this assertion we first give a 
very simple derivation of expression (1) for a 
constant field. Consider a capacitor filled with 
a dielectric of dielectric constant E, and which 
carries on its plates a constant charge Q. The 
energy of such a capacitor is 

cu = UUo + Q2 I 2C = UUo + Ccp2 I 2. (4) 

Here UU0 is the energy of the uncharged capacitor, 
C its capacity, and cp the potential difference be
tween its plates. 

Let us now subject the capacitor to some con
tinuous deformation. First we displace its plates 
or its lateral surfaces. The work performed on 
it by the external force will then be 

(i, k = 1, 2, 3), (5) 

where nk is the normal to the displaced surface, 
~i its displacement, and S its area. However, 
since a capacitor with constant charge is an elec
trically closed system, the work (5) will simply 
be equal to the change of its energy: 
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If we now express oC in terms of the displace
ment of the plates (taking into account the change 
of the density of the dielectric during deformation), 
we immediately find from Eq. (6) the expression 
(1) for aik· 

Now we show that the expression for the tensor 
in a variable field is determined by an equation 
that agrees exactly with the time average of Eq. 
(6). Consider a capacitor filled with a dielectric 
of dielectric constant E: ( w ) ; to its plates we ap
ply an alternating potential, 

(7) 

of frequency w such that Im E: ( w) = O, Such a 
capacitor, however, is no longer a closed system. 
In order to avoid calculating the work of the cur
rent source we therefore consider a simpler, 
electrically closed, oscillating system, consisting 
of a capacitor and an inductance, i.e., an oscillat
ing circuit with natural frequency w. 

The energy of a capacitor filled with a disper
sive dielectric is given by the following expression, 
which takes the place of Eq. (4), 

(8) 

This is easily obtained by comparing Eqs. (2) and 
(3) and taking it into account that C ,....., E. The en
ergy in the inductance is LJ2/2c2 = Ccp2/2, where 
c is the speed of light, and I the current through 
the inductance (here we assume that the inductance 
does not depend on frequency, and we have used the 
well known relation between current and voltage in 
an oscillating circuit). Therefore the total energy 
of our closed system is equal to 

-U = '//, + dwC (p2 -+- Cq>2 = 6U + ~ dw2C (p2 . (9) 
' 0 dw 2 ' ~ o w dw ~ 

Now let us subject the capacitor in our circuit 
to an infinitesimal deformation. The accompany
ing work of the stress forces will be, as before, 

1\A = crik~inkS. 

To calculate the change of energy in the system, 
which equals oA, we note that, as is known from 
mechanics, the so-called adiabatic invariant re
main constant during an infinitesimal change of 
the parameters of any linear oscillating system. 
For linear systems this invariant is defined as 
the ratio of the oscillation energy to the natural 
frequency of the system: 

"llosc/ w = const. 

We note that Eq. (10) has a simple quantum
mechanical basis. In fact, the energy levels of 

(10) 

every linear quantum-mechanical system have 
(after subtracting the zero-point energy) the 
form 

En= nwn (n=O,l, ... ), 

where w is the eigenfrequency and n the quantum 
number. Therefore 

UU I w = En I w = fin. 

But during an infinitesimal change of external con
ditions the quantum state of the system does not 
change, i.e., n remains constant. 

From (10) it is clear that the energy changes 
in direct proportion to the frequency, and in our 
case we obtain 

IIUU = 11 UU + dw2C (p2 bw 
0 wdw 2 w ' 

(11) 

where ow is the change in natural frequency of the 
circuit due to the deformation of the capacitor. 
Since w = c/ -.fLC we find 

1\w(w=-+IICjC, (12) 

where oC is the change in capacitance. 
We must, however, take into account that the 

capacitance changes not only by deformation, but 
also because of the change in the oscillation fre
quency of the circuit, since the capacitance de
pends on frequency. Therefore, 

1\C = 1\Cst + (dC I dw) 1\w, (13) 

where oCst is expressed in terms of the displace
ment ~i like in the static case. 

Eliminating oC/C from (12) and (13) we find 

bw (_i_ dw 2C) = -1\C 
0) ro dw st· (14) 

Substituting ow/ w from (14) into (11) we finally 
obtain 

(15) 

i.e., an expression which agrees with the average 
of Eq. (6). If we now note that oCst is expressed 
in terms of the deformation (like in the static 
case) we immediately conclude without additional 
calculation that the tensor is also given by the av
erage of Eq. (1), 

E• [ (ae) J EiEk ( ) 
Oik =- Pollik- Sit 8- P apT 1\ik + 8 ~ 16 

even in the presence of dispersion. 
Formula (15) can be presented from a some

what different point of view. We assume that the 
capacitance changes only because of changes in 
permittivity of the dielectric. Then 
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bC = (S I 4nd) be 

( S is the surface area of the plates and d their 
separation), and the infinitesimal work of the 
external forces is 

(17) 

( V is the volume of the capacitor)'. If we now con
sider instead of the capacitor an arbitrary volume 
filled with dielectric, then instead of Eq. (17) we 
obtain 

of this parameter [ E = E ( w, A.)] . Now let the pa
rameter A. depend on time. Then we can introduce 
the idea of a time-dependent permittivity. Since 
also in this case the connection between E and D 
for weak field remains linear we may write 

00 

D (t) = E (t) + ~ f ('t", t) E (t- 't") d't". 
0 

( If the properties of the medium did not depend 
on time, the function f would depend only on T 

and not on t. ) 
Putting E (t) = E0e-iwt we obtain 

(20) 

6/1 = 0°210 - ~ :~ oedV. (18) D (t) = e (w, t) E0e-t"'1, (21) 

Formula (18) is correct for changes occurring 
at a constant entropy of the medium. However, 
since at constant entropy and temperature small 
additions to the energy and free energy, respec
tively, are equal, exactly the same formula applies 
for the change in the free energy lf at a given tern
perature and at zero work of the sources of the 
field: 

(18a) 

This formula agrees with the formula for the 
change in the free energy for fixed field sources 
in the static case [see reference (1), formula 
14.1)]. 

As is well known, the components aik• together 
with U and the components of the energy-flux vec
tor S = ( c/ 47T) Ex H, form the four-dimensional 
energy-momentum tensor T a{3 of the system. 
From our results it follows that in a static medium 
the only component of T a{3 containing the deriva
tive of E with respect to w is T44 • Knowing Ta{3 

in a static medium, we can find its value in a mov
ing medium from the Lorentz transformation for
mula. Then dE/dw will enter also into the other 
components of the tensor. We write down as an 
example the equation for the energy flux of the 
field in a medium moving with velocity v [with 
accuracy up to terms ,.., (v/c )2 ]: 

c -- £2( ae ae\ 
S = -4 [ExH] + -8 wa-- p-a I v. 1t 1t (J) p, 

2. PERMITTIVITY OF MEDIA WITH TIME
DEPENDENT PARAMETERS 

(19) 

Let the state of our liquid be described by some 
parameter A.. ( In particular, this may be the den
sity or the pressure of the liquid. ) In this case the 
dielectric permittivity will of course be a function 

where it is natural to call the quantity 
co 

e (w, t) = 1 + ~ f ('t", t) ei"'' d't" (22) 
0 

the permittivity of the medium with time-dependent 
parameters. 

The function E ( w, t), however, will by no means 
agree with the function E0( w, t) = E ( w, A.(t)), i.e., 
with the function of the static value of A., in which 
we put A.= A.(t). This is connected with the fact 
that the function E ( w, t) in general will not be de
termined by the value of A. at the same moment of 
time, but will depend also on the time derivatives 
of A.. If A. changes slowly (compared to atomic 
frequencies) then the dependence of E can be lim
ited to dA./dt only, and we can take only the first 
term of the expansion in this quantity. Thus 

e (w, t) =eo (w, t) +a (w, ').., (t)) d'A I dt. (23) 

( E must of course tend toward Eo as d;>../dt- 0 ). 
The second term is usually taken to be only a 

negligibly small correction to the first. However, 
if the medium is transparent when the parameters 
are time-independent, i.e., if hn E (w,A.) = 0, then, 
generally speaking, hn a ~ 0. Therefore the de
pendence of A. on time leads to the appearance of 
an imaginary part of E, which represents a quali
tatively new effect. 

We now show that if hn E ( w, A.) = 0, then hn a 
can be found in closed form (the real part of a 
gives only a small correction to Eo and is unin
teresting). For the derivation consider a capaci
tor filled with a dielectric whose parameters vary 
slowly with time. We shall consider that a poten
tial difference 

cp = + (cp0 e-i"'t + cp~ei"'l), 
is maintained between the plates of the capacitor. 
Here qJ 0 is a complex constant. 

The current through the capacitor now has the 
form 
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I (t) = + [I0 (f) e-iwt +I~ (t) e;"'1], (24) 

where Io ( t) is a slow function of the time. The 
capacitance is given by the formula 

C (w, t) = e (w, t) S / 4Jtd. (25) 

Then the charge on the capacitor plates is 

Q = + [C (w, t) cp0 e-iwt + C* (w, t) cp~eiwt]. (26) 

Since I= dQ/dt, we find 

Io = [-iwC (w, t) + oC (w, t) I at] CJlo· (27) 

Let us now apply the law of conservation of en
ergy to our condensor. In this case it means that 
the change of energy of the capacitor equals the 
work needed to change its dielectric constant at 
a fixed current source, plus the work of the source 
to maintain the given potential across the capaci
tor. According to (15) the work for the change oE 
(per unit time) equals % cp2 ac/at, and the work 
of the current source is Icp, i.e., 

(28) 

With accuracy up to terms of higher order of 
smallness, we can regard here C as a real quan
tity in all expressions containing ac/at, since 
1m c is of the order dA./dt "' ac;at. 

Substituting (27) into (28) we find 

;p2. ac <fi a2c <p2 ac ip2 
2 at+ 2 awat = 2 7ff + 2 Im C, (29) 

1 a•c 1 a•c d'A 
ImC=2a(J)at =2a'AaroTt" (30) 

Substituting (23) and (25) into (30) we finally find 

1 a•e (ro, 'A) 
Ima(w, A,)= 2 aroat.. , 

( t) - ( t) ..L _i_ 02 eo (roc_Q 
B ffi, - f:o ffi, I 2 0(f) (jf • 

(31) 

(32) 

( The real part of a, as already indicated, is neg
ligible and can be omitted). The formula (32) 
clearly is correct also in the case when E depends 
on several parameters. 

We note in conclusion that formula (32), like 
formula (15), can be derived not only by applying 
the theorem on adiabatic invariants, but also di
rectly from the fundamental formulas of quantum 
mechanics, if one expresses the left and right 
sides of these formulas by the corresponding 
matrix elements of quantum-mechanical pertur
bation theory. However, we shall not dwell upon 
these rather cumbersome calculations. (These 
calculations were first performed by I. E. Dzya
loshinski1 to derive formulas equivalent to (15).) 

3. THE STRESS TENSOR OF A VARIABLE 
ELECTRIC FIELD IN A LIQUID LOCATED 
IN A STRONG MAGNETIC FIELD 

Consider a liquid placed in a strong constant 
magnetic field and a weak electric field varying 
with a frequency at which the liquid is transparent. 
Here we shall suppose that when there is no elec
tric field the liquid does not have any magnetic 
properties, i.e., that its magnetic permeability 
is J.l = 1. 

The permittivity of the liquid in the magnetic 
field in the absence of absorption is a Hermitian 
tensor of the form 

e;k (w, H)= e1 (w, H 2) O;h + e2 (w, H 2) H;Hk 

(33) 

where H is the constant magnetic field intensity, 
and eikZ a totally antisymmetric unit tensor. Here 
E1, E2, and E 3 are functions of H2 and w which 
tend toward some finite limit as H2 - 0. In par
ticular, for an electron plasma, 

(34) 

( n is the number of electrons per unit volume, e 
the charge, and m the mass of the electron). 

Consider some volume filled by a dielectric 
of permittivity (33). By generalizing some argu
ments of the preceding section, it is not difficult 
to show that in this case the following relation 
holds for the variation of the free energy [instead 
of formula (18a)] 

off= HoFo- 1~n E~iEokOBih} dV, (35) 

where F 0 is the density of the free energy in the 
absence of an electric field, and E0 is the complex 
amplitude of the electric field:* 

E = T (Eoe-iwt + E~e'"'t). 
We note first that although our medium is by 

assumption nonmagnetic ( B = H) when there is 

*To derive (35), strictly speaking, it is not enough to con
sider only the field in a capacitor, since we cannot produce in 
that way a field of the most general form, say a rotating one. 
This difficulty can easily be avoided by considering, instead 
of an oscillating circuit, a cavity resonator of arbitrary form. 
Simple calculations lead to the same formula (35) in this case, 
too. 
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no electric field, this is no longer so when the 
electric field is taken into account. Therefore 
we determine first the connection between B and 
H, accurate to terms ,..,. E2• For this we use the 
well known thermodynamic equation 

H = 4naF 1 as. 

Carrying out the differentiation with the help of 
formula (35), and taking into account that fJ. = 1 
by assumption, i.e., 

( F 00 is the density of free energy in the absence 
of both the electric and magnetic fields ) we find 

H = 8-+ E~tEokaeik I as 

or, to the same accuracy, 

(36) 

B = H + T £~1 Eokae,k I au. (36a) 

We note that since aqk/BH ~ 0 when H = 0, 
B ~ 0 even when H = 0, i.e., a variable electric 
field can create in the medium an average mag
netic moment proportional to E2• It is easy to 
see that for this the electric field must rotate, 
i.e., it must not be linearly polarized. 

Now we subject our dielectric to a deformation 
at constant induction B, the displacement vector 
of its points being or ( r). Then we must recog
nize that when a volume element is displaced its 
permittivity changes, and consequently the mag
netic field changes from point to point. Taking 
this into account we obtain 

ae.k ae.k 
{)elk=- (6r V') Etk- af;- p div 6r + a~l (6r \7) Bz. (37) 

Since the deformation takes place at constant 
B, we have 

6F0 = 6F00 =- (6rv) F00 - a:;o pdiv6r. 

Substituting into (35) and integrating by parts we 
obtain 

{)GL \{ ( oFoo \ 1 ( • oeih.) 
21- = ~ \7 Pap- F oo;- 16n: \7 Eo;Eo"Pap 

E~1E011. ( ae1h. ')} -1'6Jt ven,+ 081 vBt 6rdV, 

On the other hand, the change in free energy 
equals the work of the forces 

{):f =- ~ f6r dV, 

(38) 

(39) 

where f is the force acting on a unit volume of the 
dielectric. Equating (38) and (39) and recalling that 

[p00 = p00(p, T) is the pressure in the absence of 
the fields as a function of p and T ], we find the 
final expression for the force 

f = -grad Poo + i:n: grad [£~; £ 011. (;~" \ p J 
E~; Eok [ 08tk J - --- grade·"--. grad B1 16n: ' aB1 

(40) 

or, substituting Erii Eok aqk/BBz from (36), 

f =- 'V Poo + 1 ~n; \7 [ E~;Eok (;~h.) P] 

E~;Eok (Bt-Hz)V'Bt 
-~ \7Etk+ 4n; (41) 

To find the tensor aik we must transform the 
right side of (41) into the form 8Uik/8xk. For this 
we note that in virtue of the Maxwell equations 

• 08tm a • ( • aEom 
Eot Eom -0- = -0 (Eot Eom Etm)- Eot Etm -0-

~ ~ ~ 

. ) a • (aE01 • + compl. conJ. = OX; (EotEomEtm)- axm Dom 

. ) a • (aE01D~m + compl. conJ. = ax; (EotEomEtm)- ax;;;-

+compl. conj .). 

(Bk -H11.) dB11. = ~ (.!!:_- BH)- aHk Bk = _j__ ( 82 - BH) 
OX; OX; 2 OX; OX; 2 

+ oH1Bk = _!__ {- H• _ (B _ H)•} + oH1Bk 
axk axi 2 2 axk 

1 an• an,B" 
=- 2 OX; + axk . 

We obtain 

1 { E~zEom ( aetm ) 2} Otk =- Poo6ih. + Bn: --2- Pap- Btm - H 6;11. 

1 1 • ) + 4n; H,Bk + 16n: (EotDoh. + compl. conj. (42) 

or, expressing D by E and B by H, 

1 { OE-zm • • • } + 16n; H;aHk EotEom+(eh.mEotEom+compl. COnJ.). 

(43) 
The tensor Uik in the liquid must satisfy two 

conditions. First, the tangential components of 
the force's acting on the surface must be continu
ous on the interface between two adjoining liquids. 
This is necessary in order that the liquids be in 
mechanical equilibrium. If we recall that the tan
gential components of E and H, and the normal 
components of D and B, are continuous in virtue 
of the boundary conditions, then it follows at once 
from (42) that this condition is fulfilled, i.e., that 
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( n is the normal to the surface ) . 
Secondly, in virtue of the law of conservation 

of angular momentum, the tensor Uik must be 
symmetric. To verify that this condition is ful
filled we express Eik through E1, E2, and E3 in 
(43). We obtain 

oa, = - (Poo + ::) 6;" + 4~ Hi H" 

+ ie3E~i[Eo><H]" +com pl. conj.] + 2HtH" [;;:2 EoxE~ 

, ae2 I [E H l2 • aes E• E ] . • , } 
T aH2 oX 1 + t aH2 [ oXr o]x,H + tBaH i [Eo X Eo]" . 

(44) 
We can verify the correctness of the identity 

iE~; [E0 xH]" + compl. conj. =- iH; [E~ x E0]1, 

• (45) + i[EoxEo] H6;k, 

with the help of which we now write Uik in the 
manifestly symmetric form 

The expression (46) can be generalized without 
difficulty to the case where the medium possesses 
magnetic properties even when the electric field 
vanishes. 
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