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The methods of quantum field theory are used to study the influence of the elastic scattering 
by impurities on the quantum oscillations of the magnetic susceptibility of the electron gas 
in a metal (the de Haas-van Alphen effect). The quasi-classical case is considered, for 
which the condition liw/t « 1 is satisfied, where w is the frequency of revolution in the 
magnetic field and t is the chemical potential; a quadratic dispersion law is assumed. It is 
shown that if 1/wTo » tiw/t the effect of the scattering by impurities is described by the 
Dingle factor3 with 'TJ) = 4To/7T (To is the mean free time for H = 0). If 1/(wT0 ) ~ tiw/t, a 
more complicated situation exists. In particular, if t = tiw ( M0 + %) + tl and I lll ::s liw/2, 
then for ti2wo/t « I lll ~ liw/2 the effect of impurities reduces, as before, to the Dingle fac­
tor. In the region I lll ~ ti2wo/t the effect of the impurities is extremely complicated. 

IT is well known that at sufficiently strong mag­
netic fields, for which the quantization of the energy 
of an electron becomes important, the electron gas 
in a metal has an appreciable magnetic suscepti­
bility.1-2 The susceptibility x (H) is the sum of 
two terms: x (H) = x1 + x2 (H), where x1 does not 
depend on the magnitude of the magnetic field, 
while x2 (H) is an oscillating function of H. 

In calculating x2 (H) the overwhelming majority 
of authors have concerned themselves only with the 
dependence of x2 on the magnetic field and the top­
ology of the Fermi surface and have not studied the 
effect of the scattering of the electrons on x2 (H). 
An exception is the work of Dingle, 3 who has made 
an attempt to take into account the effect on x2 of 
the elastic scattering of the electrons by imp uri­
ties. For this purpose Dingle used the artificial 
method of introducing into all the formulas for x2 
a certain averaging factor, which subsequently re­
ceived the name of the Dingle factor. 

In the present paper we use the methods of 
quantum field theory, as developed for application 
to scattering by impurities by Edwards4 and by 
Abrikosov and Gor'kov, 5 to study the problem of 
the effect of the elastic scattering of the electrons 
by impurities on the oscillating part of the suscep­
tibility. 

To find the magnetic moment of a system of 
electrons it is necessary to calculate the free en­
ergy F. Since we are considering only elastic 
collisions with the impurities, the distribution 
function is not changed, so that we can write at 
once: 

r dZ I=.:_ 
F = N~- 2kT J de In ( 1 + e kT ) de, (1) 

0 

where t is the chemical potential of the system, 
N is the number of electrons per unit volume, and 
dZ/dE is the number density of electron states per 
unit energy range, in the presence of the magnetic 
field H and chaotically distributed impurities. 
The factor 2 in the term with the integral is due 
to the spin of the electron (we are not concerned 
with the spin part of the susceptibility). 

The problem thus reduces to that of calculating 
the density of states dZ/dE. For simplicity we 
shall adopt the dispersion law E = po/2m. The re­
sults can be extended in a very simple way to an 
arbitrary quadratic dispersion law. 

In the absence of impurities 

( dZ) m'l•w 1 
de 0 = z'l•nz ~ Ve- w (M + 1j2) 

M 

(2) 

(we have set 1i = c = 1). Here the summation over 
M is taken for positive values of the radicand, and 
w = eH/m is the frequency of revolution of an elec­
tron in the magnetic field. 

It is very convenient to represent the energy in 
the form 

l~l<ro/2. (3) 

It can be seen from Eq. (3) that for tl = 0 the den­
sity of levels dZ/dE is a discontinuous function: it 
approaches a finite limit for tl- - 0, and goes 
to infinity like tl -l/2 for tl - + 0. Inclusion of the 
scattering by the impurities must destroy this dis­
continuity and make dZ/dE a smooth function. 
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1. CALCULATION OF dZ/dE 

Let us consider the Green's function of an elec­
tron 

G ( '· ) = ~ 1Pn (r) ljl: (r') 
r' r ' e LJ E - e - i6 ' 

n n 
(4) 

Here n is a set of quantum numbers that charac­
terize the state of the electron in the presence of 
the magnetic field H and of the impurities; En and 
1/!n ( r) are the energy and wave function of the elec­
tron in the corresponding stationary state. If we 
now use the orthonormality of 1/!n(r) and the defi­
nition of dZ/dE, according to which 

dZjde = ~{>(En- e) 
n 

(where o (x) is the usual o function), it is easy 
to establish a connection between the density of 
states dZ/ dE and the Green's function G ( r, r'; E ) : 

dZ 1 \ 
de = n Im.) G (r, r; e) dr. (5) 

The Green's function G ( r, r'; E) satisfies the 
equation: 5 

G (r, r'; e) 

= G0 (r, r'; e)-~ G0 (r, r"; e) V (r") G (r", r'; e) dr", 
(6) 

where G0 ( r, r'; E) is the Green's function of the 
electron in the absence of impurities and 

V(r) = ~v(r-ra) (7) 

is the potential of the field of the chaotically dis­
tributed impurities. 

Let E~ = w ( M + %) +Pi /2m and 1/1~ ( r) be the 
energies and wave functions of the stationary states 
in the absence of impurities. The set of quantum 
numbers n consists of the :tnagnetic quantum num­
ber M, the momentum Pz ( H is directed along 
the z axis), and a wave number Py• which is 
connected with the center of the orbit of the elec­
tron on the x axis by the relation x0 = Py /eH. Let 
us expand G(r, r'; E) in terms of these functions. 
Obviously 

G0 (r, r'; e)=~"ljl~(r)gn"ljl~*(r'), 
n 

G (r, r'; e)= ~ "ljl~ (r) Gnm"IJl~ (r'), (8) 
n,m 

where the summations over n, m mean summation 
over the magnetic quantum number M and integra­
tion over dpz and dpy; gn = ( E~ - E - io ) - 1• 

By using the relations (6) and (8), we easily get 
the equation that is satisfied by Gnm: 

Gnm = f>nmgn- gn ~ Vnk Gkm• 
k 

Vnk = ~ "ljl~* (r) V (r) "ljlg (r) dr. 

(9) 

a 0 [ ,, 
-x- -x-x- -x-x-

a a a aft 
e f h 

-~- ~-)(-->C- -><-~-x- -»-x-x- -)(-X->c-

aft a a aft aftft ajJy a a a 

FIG.l 

Here Vnk is the matrix element of the operator 
for the interaction of the electron with the imp uri­
ties. The function for the energy density of the 
states is simply related to Gnn: 

dZ 1 ~ 
de = n ImLJGnn· (10) 

n 

Let us now proceed to the solution of Eq. (9). 
For this purpose we use the results of the paper of 
Abrikosov and Gor'kov. 5 According to Eq. (7) 

V~k = ~ "ljl~* (r) v (r- ra) "IJlg (r) dr. 

If in a diagram we use a cross with the index a to 
correspond to the expression v?k· and a straight 
line to correspond to gz, then Gnm can be repre­
sented up to terms of third order in V by the dia­
grams shown in Fig. 1. The transition from a dia­
gram to the corresponding algebraic expression is 
made by means of a simple rule: one places in 
correspondence with each line a factor gz and with 
each cross a factor v?k; as we move along the 
diagram, the indices l and k change only when we 
pass through a cross; to the initial and final lines 
there correspond the indices n and m. Mter the 
expression is written out, it must be summed over 
all indices corresponding to intermediate lines and 
over the indices of the various impurities, which 
are denoted by Greek letters, and then multiplied 
by (- 1 )s, where s is the number of crosses in 
the given diagram. 

To illustrate this rule by examples, let us write 
out the expressions for diagrams c and e of Fig. 
1: 

gn ~ V~kgkV~mgm, (c) 
h., a 

~ a ~ a 
- gn .LJ Vnkgk Vktgl Vtmgm · (e) 

h. I 
a+~ 

From the diagrams drawn it is clear than we 
have first a perturbation-theory series with re­
spect to the scattering by a given impurity (for 
example, b and c in Fig. 1 ), and second a per­
turbation-theory series corresponding to succes­
sive scatterings by different impurities ( b, d, h 
in Fig. 1 ). 

Obviously the summation of the diagrams of 
types b and c in Fig. 1 is simply the transition 
from v~ to the complete amplitude for scattering 
of the electron by the given impurity, azk· We 
have 
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(11) 

We shall therefore not consider henceforth dia­
grams in which a given impurity is encountered 
two or more times in succession (types c, f, etc.), 
and shall put in correspondence with a cross the 
complete amplitude azk (there remain, however, 
diagrams like e in Fig. 1, in which, between suc­
cessive scatterings by an impurity a, the electron 
is scattered by one or more impurities {3 ~ a ). If 
we make this stipulation, then up to the fourth or­
der we need consider only the diagrams shown in 
Fig. 2, where crosses for the same impurity are 
connected by dashed lines. 

a b c d --- -x-x- --><-X-
f i 

-x-x-x-x- -x-X-l<'-)f-

' ' ..... __ .... 

FIG. 2 

Some remarks must be made regarding the 
total amplitude alk for scattering by a given im­
purity. For metals with a quadratic dispersion 
law, i.e., a small number of carriers, the wave­
length of the electron is much larger than the 
range of the potential of an impurity. Therefore 
the potential of the impurity can be treated like a 
o function. In this case the scattering amplitude 
has the form6 

(12) 

The function F ( E) can be determined very sim­
ply. Obviously 

ark= ~'¢f(r)v(r-ra)'1!Jk(r)dr, 

where ~k ( r) satisfies an integral equation that is 
equivalent to the Schrodinger equation: 

'¢~< (r) = '¢~ (r)- \ G (r, r'; e) v (r- rex)'¢~< (r) dr. 
" 

It is clear that to find the amplitude alk it is 
necessary to know ~k ( r) in the region of action 
of the potential. But in this region, i.e., for small 
values of r and r', the Greens function satisfies 

G (r, r'; e)= G0 (r, r') + g (e), 

where G0 ( r, r') is the Green's function of the 
electron for E = 0 in the absence of the magnetic 
field. If we take all these points into account, we 
get for F ( E): 

F(e)=f-f2g(e), (13) 

where f is the scattering amplitude of the electron 
for E = 0 and H = 0. 

The expression (13) is nothing other than the ex­
pansion of F ( E) in powers of the small ratio of 
the scattering amplitude for E = 0 to the wave­
length of the electron; it is incorrect only in the 
narrow range of values of the magnetic field in 
which b. « w, 6 since in this region fg » 1 and 
therefore it is necessary to take into account sub­
sequent terms in an expansion of F (E) in series 
of powers of fg. We shall assume, however, that 
when collisions with impurities are taken into ac­
count fg « 1. We shall discuss this condition later 
in more detail. 

It is easy to establish the connection of g (E) 
with the sum 6 gn. It can be shown6 that the sep­

n 
aration out of g (E) is equivalent to dropping from 
the sum 6 gn the divergent part that arises from 

n 
summation over very large magnetic quantum num-
hers M. 

In the specific calculation of Gnm we shall as­
sume that the following conditions are satisfied: 
!; » w, i.e., we have the quasi -classical case, and 
WT > 1 (as we shall see later, for WT ~ 1 the 
quantum effects are exponentially small). 

The simplest diagrams in Fig. 2 are b, c, d, 
and f. For these diagrams the averagings over 
the positions of the impurities for the various 
crosses are independent of each other. The aver­
ages can be taken over the whole volume of the 
crystal. In particular, for diagram c we have 

gngm L; (a~k> gk (a~m) = 6nmg~c2P (e), (14) 
k 

a'l"(> 

where c is the concentration of impurities. The 
relation (14) follows from the obvious formula 

~ (a~k) = F (e) c ~ '¢~* (ra) '¢~ (ra) dra = F (e) c 6nh· 
a 

Obviously to each impurity there must correspond 
a term cf2g, since the term cf is simply the 
change of the reference level for the energy. If 
we take this into account, the expression (14) is 
equal to 6nmgt_c2f4g2. 

We can at once calculate the expression for an 
arbitrary diagram in which a given impurity is en­
countered only once (types b, c, and so on). We 
have 

(15) 

In order of magnitude such a diagram gives 

(16) 

i.e., for b. ,.... cf2g they give the same contribution. 
Let us now study the simplest diagrams in which 
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FIG. 3 

a given impurity is encountered twice (e in Fig. 2). 
It is easy to show that after the averaging the dia­
gram e gives 

For t:.. ,...., cf2g this diagram is of the same order as 
diagram c. By similar arguments it is easy to 
show that for t:.. ,...., cf2g we get the same contribu­
tion from all diagrams in which a given impurity 
is encountered not more than twice. These include, 
in particular, diagrams of the type a of Fig. 3. 

An exception to this rule is formed by diagrams 
of the type j of Fig. 2. Simple estimates show 
that for arbitrary t:.. the ratio of the expression 
corresponding to this diagram to that for diagram 
c of Fig. 2 is 1/M0, where M0 ,...., Ejw. But since 
we are assuming that M0 » 1, this means that the 
"overlapping" diagrams can be omitted. We note 
here that the dropping of diagrams ,...., 1/ M0 is 
practically equivalent to the neglect of corrections 
,...., 1/ ( ET) in comparison with ,...., 1/ ( WTo). Since we 
are interested only in corrections to w, we shall 
omit diagrams of the type j of Fig. 2. 

Diagrams are possible in which a given impur­
ity is encountered more than twice. An example 
is the diagram b of Fig. 3. A simple estimate 
shows that in order of magnitude this diagram is 
equal to t:.. - 1( cf2g/ t:.. )3fg, i.e., as compared with 
the diagrams considered previously, it contains 
the extra factor fg « 1. This factor occurs in all 
diagrams in which a given impurity is encountered 
more than twice. 

Our final conclusion is that in the expansion (10) 
we need include only terms in which each impurity 
is encountered not more than two times, and that 
we must omit overlapping diagrams of the type j 
of Fig. 2. In addition to this, after the averaging 
only the diagonal elements of the matrix Gnm 
will be different from zero: 

(Gnm) = f>nmGn• 

If we take all these facts into account, it is easy 
to get the equation that Gn satisfies. Obviously 

G;;- 1 = E~-e+cF-cP(G-g), 

or, if we use the fact that F = f - f2g, 

G;;- 1 = E~- e + cf- cf2G. 

n 

(17) 

Finally we get for G ( E ) the following equation 
(we have dropped the term cf, which means a 

change of the reference level for energies and is 
of no interest): 

G = ~ (E~- e- cf2Gr1 • 

n 

If we perform the integration over pz, we get 

G = i m:;:w { ~ [e + cf2G- ro (M + 1/ 2)]-'1•- A}, (18) 
2 1t M=O 

where the subtraction of A is equivalent to the 
subtraction of the divergent term caused by sum­
mation over very large values of M. 

According to Eq. (9), the density of levels is 
connected with G ( E) by the relation 

dZ 1 
d- =- Im G (e). (10') 

ll 1t 

Since the calculation is being made in the quasi­
classical domain w/t, « 1, G is essentially equal 
to an integral with respect to M plus an added 
term G1 which goes to zero for H = 0 and is in 
general small in comparison with the integral, ex­
cept for a narrow range of values of the magnetic 
field, in which It:.. I « w. We take for the integral 
the value G0 = im312E1/ 2(21T)-112, since we must 
neglect the corrections to E caused by the scatter­
ing. Thus we have 

G =Go+ i m:w ~ 1 'I { 00 

21•n: M=O Y ll + cf2G- ffi (M + 1/z) 

-f ve+c~~-wM }· <19> 

For not too small t:.. the ratio G1 I G0 is in order 
of magnitude ( wj E ) 1/ 2 « 1. Thus in this range of 
values of H Eq. (19) can be solved by the method 
of successive approximations; that is, we simply 
substitute G0 in the expression in curly brackets. 
Furthermore, 

where To is the mean free time for H = 0. 
The calculation of G1 can be carried out by 

means of the Poisson summation formula: 
00 00 00 

2; f(M +1/2)=2; (-1)li f(x)e2nilxdx, 
M=O -co 0 

from which we have 
$ 00 00 • 

(20) 

m l•w ~· l \ e2"llxtix 
G (e)= G0 (e)+ i -,-1 - "'-! (-1) ~ Y . ; (21) 

2 2 1t -co 0 ll + tn:/2To- ffiX 

the prime on the summation sign means that the 
term with l = 0 is omitted. 

For the oscillating part G1 we have 
00 00 

i m'l•w'l• 2; ( -1/ e2nil<fw ( e-2nilx dJc 

2'1•n: 1 ~ V X + in:/2ffiTo 
-00 
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The calculation of this integral is not difficult, and 
therefore we simply state the result, 

. m'l•w'l, ~ (-1)1 ( e rt rt2{) 
t - 2 - LJ -y'- exp 2rr.il -- i -4 -- . (22) 

rt 1 [ W WTo 

From this .we get as the expression for ( dZ/dE ): 

(dZ) m'l•w'l• ~ (-1l p, ) 
de;osc = --z1t2 ~--:vz-- exp (-rr.2ljwT0)cos \2rr.lcj;-- ~ • 

(23) 

The factor exp (- rr2Z/ wr0 ) is indeed the Dingle 
factor. 3* 

The maximum value of G1 is reached near 
L\ = 0; this maximum value is of the order of mag­
nitude m312wr0112, and therefore if (wrG)-1 » w/E 
Eq. (23) is valid for arbitrary values of A. A 
more complicated situation arises in the case 
( wr0 ) - 1 ~ w/E. Here too, however, Eq. (23) is 
valid as before for I L\ I » wo/E. 

For small values of L\ ( I L\ I « w) Eq. (19) 
becomes much simpler, and takes the form 

G = G + im'l•w 1 
0 2'1•n V fl.+ cf2G • 

(24) 

Equation (24) is obviously an algebraic equation of 
the third degree in G. We shall only study some 
of its properties. 

An elementary analysis shows that Im G1 falls 
off rapidly with increase of I L\ 1. but remains 
positive. At ~ = rr( 2 · 3112ro f 1 « w the function 
Im G1 has a maximum, and 

(lm G1)max = lm G0 (ljwT0 ~ wjs). (25) 

In particular, for ( wr0 ) - 1 « w/E 
¥3 (w2T )'/, (lm G)max = lm G0 -,----1 ,1 - 0 • 

rt '2 • 8 
(25') 

Equation (24) is valid only in a narrow range of 
energies near A = 0. In order to calculate the 
position of the minimum of Im G it is necessary 
to use Eq. (19). We shall not do this. 

Let us now return to the condition (13). It is 
quite obvious that Eq. (13) will be satisfied if we 
have f ( Im G )max« 1. It is easy to show, when 
one uses Eq. (25), that this condition is equivalent 
to the following restriction on the concentration of 
impurities: 

(26) 

where a is the total cross section for elastic scat­
tering of an electron by an impurity for H = 0, 
E = 0. 

*We note that the quantity r 0 , which in Dingle's paper 
plays the role of a mean free time, is actually connected with 
the true mean free time 'T0 for H = 0 by the relation 'T0 = 47'0 /rr. 

2. CALCULATION OF THE MAGNETIC SUSCEP­
TIBILITY AND THE MAGNETIC MOMENT 

It now remains for us to calculate the formulas 
for the magnetic moment and the susceptibility. 
Since we are interested in only the oscillating 
parts of these quantities, we shall hereafter always 
give formulas for x2 and M2• If we use the rela­
tions (1) and (10'), we get 

<X> 

2kT (' (aa1) M 2 =--n .\ Im aH ln(I+exp(~-s)jkT)ds. (27) 
0 

It can be seen from Eq. (19) that G1 is a func­
tion of the variables w and L\ = E - w ( M0 + % ). 
It is obvious that in Eq. (27) we must differentiate 
G1 only with respect to L\, since then each differ­
entiation with respect to H will involve multipli­
cation by the quantity M0 » 1, and therefore 

aa1 = _ (~) (~) aa1 
aH m. w ae · (28) 

This means that we must know the functional 
relationship G1 (L\) over the whole periodicity 
interval I L\ I :::;: w/2. But for arbitrary L\ this can 
be obtained in closed form only in the case 
( WTo) - 1 » W/E (cf. Eq. (23) ): 

m'l•w'f, ·( e \ ( ~) 
M2=--n- m) -00 kT 

X ~ (-1)1 exp (- rt2i/WT0) • ( 2 l ~ rt) LJ _ - sm rr. - -- . 
1 Vl sinh(2Jt".llkTfw) w 4 

(29) 

Actually this formula is also valid for arbitrary 
(wr0 )-1'. In fact, itcan be seen from Eq. (29) that 
M2 "' (e/m)m312w112t. At the same time the con­
tribution to M2 given by the integration in Eq. (27) 
in the region I D. I"' w2/t is (e/m)m312tD.112• But 
the ratio of this correction to M2 is "' ( w/t )112 

« 1, so that the contribution from the region L\ 
"' 0 is relatively small, and thus M2 depends only 
very weakly on the exact behavior of Im G1 for 
L\ "' 0. 

We have written out the expression for the mag­
netic moment in the case in which there is a single 
group of electrons with an isotropic dispersion 
law. This formula can be extended very simply 
to the case of several groups of electrons corre­
sponding to different ellipsoids with arbitrary 
quadratic dispersion laws E = %mi~PiPk• where 
mik is the mass tensor. If we take the z axis in 
the direction of H, then the frequency of revolution 
of the electrons that belong to the ith ellipsoid is 
Wi = eH ( m~z/1 mi I )1/2 (I mi I is the determinant 
of the mass tensor). With this notation we have 
instead of Eq. (29) 
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00 l 
kT ~ (-1) exp (-n21/ro[Co) . ( 2 l ~ n) 

X .LJ . Sln l't - - -
1 JfT $inh (2n21 kT fro) roi 4 ' 

(29') 

where To is the mean free time in the absence of 
the magnetic field. Thus the effect of the scatter­
ing by impurities on the oscillating part M2 of the 
magnetic moment has the character of a Dingle 
factor for an arbitrary value of the ratio 1/ ( WTo ). 

Besides M2, the susceptibility x2 =8M2 /BH is 
of interest. If we use the same arguments as in 
the derivation of Eq. (28), we easily find that 

00 

X2 = - ~ (~J ( ~Y ~ Im G1 a;; de 
0 

(f o = { 1 + exp e ;; ~} -} (30) 

In particular, for T = 0 

(31) 

i.e., x2 is directly connected with Im G1, whose 
properties we have already elucidated in the pre­
ceding section. 

We can finally summarize as follows the re­
sults relating to the effect of the scattering by 
impurities on the magnetic susceptibility x2• If 
( WTo)-1 » w/t, the effect of the scattering is de­
scribed by the Dingle factor for all values of the 

magnetic field H. For ( WTo )-1 ~ w/t and I D-1 
» w2/t this is still true, but in the region I D-1 
~ wo/ t the dependence on the impurities is more 
complicated. 

We note here that for T » w2 It and arbitrary 
WTo we have as a valid formula for x2: 

'! 00 

X2 = 2 :.1: ( ~y (cf y kT ~ ( _ J / Vt exp (-n21/roTo) 

1 sinh(2:rt21 kT jw) 

X cos(2ntj-~)· (32) 
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