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The problem considered is that of the radiation from a uniformly moving charge in a medium 
with random inhomogeneities. Expressions are obtained for the intensity, the polarization, 
and the directivity of the radiation. It is pointed out that as the threshold for the Cerenkov 
effect is approached there is a logarithmic increase of the radiated intensity. 

A charge moving uniformly in an inhomogeneous 
medium must give rise to radiation due to the 
polarization of the medium. If the inhomogeneities 
of the medium are randomly distributed, then we 
get incoherent radiation caused by the polarization 
of these inhomogeneities. This effect can be re
garded as a special type of transition radiation at 
the inhomogeneities of the medium. It is obvious 
that these phenomena are analogous to the scatter
ing of light and can be described in terms of the 
scattering of the waves that accompany the motion 
of the particle. Unlike the Cerenkov effect, the ra
diation at inhomogeneities of the medium will 
occur also at speeds smaller than the phase veloc
ity of light in the medium. 

For the calculation we represent the field 
caused by the motion of the charge as a sum of 
plane waves (cf. e. g., reference 1). When a 
charge moves with the velocity v the field pro
duced is excited by the charge and current density 
distributions 

p = e6 (r - vt), j = ev6 (r- vt). 

When the electromagnetic field from these sources 
is represented as Fourier integrals describing the 
variation with the coordinates, the field is described 
by the following Fourier components Ak of the 
vector potential and <,Ok of the scalar potential 

<p - _e_ 1 e-•rol 
k - 2n2e k2 - w2e I c' 

From this we have for the spatial Fourier compo
nents of the electric field, which depend on the 
time, 

E iw A 'k ie wv jc•- kje -irot 
k = c k- 1 <pk = 2n2 k•- w2efc2 e ' (1) 

where k is the wave vector; E: = E: ( w) is the dielec
tric constant at frequency w; w = k·v = kxv; v is 
the speed of motion along the x axis. 

Let us consider the radiation from the fields at 
the inhomogeneities of the medium, using the 
usual arguments of scattering theory. For scalar 
scattering on random inhomogeneities of the 
dielectric constant of the medium, the radiation 
is emitted from volumes that are small in com
parison with the wavelength. This corresponds to 
Rayleigh scattering at small particles or at fluc
tuations of the density of the medium, on the as
sumption of dipole radiation from the scatterers. 

The total intensity of the incoherent radiation 
in the frequency range dw is obtained by summing 
the intensities radiated from the individual scat-
terers over the entire volume V: 

d! .,, = Sn~~Ve ~ N i Pro 12 dV dw, 
v 

where N is the number of scattering centers in 
unit volume, and Pw is the Fourier component of 
the dipole moment of a scattering element with 
the polarizability a. Since Pw = aEw, the total 
intensity is given by 

dl"' = Snw• r:Nct.• ~I Ero 12 dV dw. 

We see that the scattering properties of the me
dium are entirely determined by the extinction 
coefficient 

(2) 

The extinction coefficient has the dimensions of an 
inverse length. The distance L = 1/s = 1/Na is 
essentially the range of radiation in the scattering 
medium; L is determined by the scattering either 
at fluctuations of E: or at scattering particles 
which are characterized by a cross section a. 

The integral of I Ew 12 over a volume that is 
unlimited in the y and z directions and is of 
length l in the x direction can be expressed in 
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terms of the Fourier components Ek by the 
formula 

1 +oo 
~~~ , Ew [2 dx dy dz = :~· ~ dx ~~ EkE'~ dku dkz. 

0 -00 

Thus we get for the radiation from unit path length 
in the frequency range dw the expression 

J __ df,, - t,ntsc fe 1f E E' dk dk . 
"' ·- ldw - v2 ~J k k Y z 

--00 

Using the relations (1) and (2), we break the inte
grand up into two parts, 

2sc2 fe 1·1 { (w /v) 2 (e\32 -- 1)2 

1"' = Cj32e2 j) [(w/v)2 (1-ef32)+k~+k;J2 

k2 -j- k2 } 
'- Y z dk dkz (3) 

1 [(w jv)2 (1- ef32) + k~ + k!l 2 Y ' 

where f3 = v/c. For the integration it is convenient 
to change to polar coordinates in the plane of ky 
and kz: 

In the first part of the integral we have sepa
rated out the terms that are due to the polarization 
of the volume by the field Ex directed along the 
motion of the charge. This integral converges at 
all values of p2 and gives 

2ne2s • 2 lwx = -,-1 (I- 8[1 ). 
cf32e ' 

(4) 

The integration of the second part of Eq. (3) gives 
the radiation that is due to the polarization of the 
volume by cylindrical waves with the fields Ey. 
Ez, 

.:: 2 
2ne•s ' PaP -1) (5) 

j wyz = cf3•e'/, (In wz (1- ef3•) ' 

where poo denotes the upper limit of the integra
tion with respect to p. 

Let us examine the behavior of the integrals for 
E{32 < 1, i.e., below the threshold of the Cerenkov 
effect. Unlike the integral (4), the integral (5) di
verges logarithmically at the upper limit, which 
corresponds to small distances. At small dis
tances, however, the microscopic treatment of the 
scattering is illegitimate, and therefore we can 
simply introduce a certain limiting frequency Woo 
= p00/v, corresponding to this restriction. Thus 
the complete spectral density of the energy radia
ted by the charge per unit path length is given by 

(6) 2 ( (f) ) J = ~ 2 In 00 - e~2 • 
ce'l•f3• w V1-ef3• 

Let us find the distribution of the polarization 
and intensity of this radiation. In view of the di-

pole character of the radiation from the scatterers, 
we get for the angular distribution of the radiation 

dJ= 8~ [lwxsin2 {l>++J"'yz(l+cos2 {l>)]dei, (7) 

where da is an element of solid angle and J is the 
angle between the direction of observation and the 
motion of the charge. 

A quantity of practical importance is the ratio 
of the intensities emitted in directions along the 
path and transverse to the path, which is given by 

J 11 _ ln[w00 jwf~]- 1/• 
Jl. -ln(w00 jwf1-ef32]-ef32 + 1 / 2 • 

Since the radiation from Jx is directed only 
transverse to the path of the particle, the radiation 
directed along the path of the particle is not polar
ized, as is already clear from considerations of 
symmetry. The degree of polarization P of the 
radiation directed transverse to the path depends 
on the velocity: 

P II _ In [ffi00/ffi J11=8[32]- 1/z 
pl.- 1-ef32 

(8) 

Let us express the formula (6) for the total in
tensity of the radiation in terms of the number dn 
of quanta of energy tiw that are emitted in the 
frequency range dw in unit path length: 

d = e•si.. r 2 In woo - In (I - 8~2 ) - e~2 J '!_~ , (9) 
n 1icnef3' L w c 

where A. = 27Tc/ wE 112 is the wavelength in the 
medium. 

A basic feature of the radiation at random in
homogeneities of the medium is its logarithmic 
increase with approach to the condition E{32 - 1, 
since the velocity dependence of the other terms 
is small. The value of the limiting frequency Woo, 
or the corresponding value of the minimum impact 
parameter, determines the part of the radiation 
that has only a weak velocity dependence for large 
{3. 

The magnitude of the effect itself can be com
pared with the intensity of the Cerenkov radiation, 
which occurs in the medium for E{32 > 1. In the 
notations we have been using the intensity of the 
Cerenkov radiation is 

e2 dw 
dnc = 1icef3• (e~2- I) c. 

In the case of a gas the ratio of intensities 
n/nc for {3 ~ 1 is given in order of magnitude by 
the ratio of the polarizability of the medium to its 
scattering properties, 

nfnc ~a;t.,a, 



956 S. P. KAPITZA 

i.e., it is determined by the ratio of the polariza
bility x of a molecule or particle to the cube of 
the wavelength, and does not depend on the number 
density. 

The possibility of studying the effect depends 
on the size of the scattering in the medium. It is 
obvious that the size of the volume in which radia
tion from the charge occurs must be smaller than 
the range L of the radiation, in order for it to be 
permissible to neglect secondary scattering and 
depolarization of the radiation. 

It would be interesting to observe the smearing 
of the Cerenkov radiation near the threshold owing 
to the logarithmic increase of the radiation from 
inhomogeneities of the medium. 

If the medium contains atoms that give reso
nance scattering, they will also be excited, since 

the medium scatters strongly at these frequencies. 
This excitation of atoms will occur even if the 
density and effective cross section of these atoms 
does not lead to local reaching of the threshold for 
Cerenkov radiation at the resonance frequency. 
Thus there can be excitation of small impurities in 
a gas if the main substance does not have an anom
alous polarizability at the frequency in question. 

The writer thanks L. D. Landau and L.A. 
Va1nshte1n for helpful discussions. 

1 L. D. Landau and E. M. Lifshitz, 
3JieKTpOAKHaMKKa CllJIOWHbiX cpeA (Electrodynamics of 
Continuous Media), Fizmatgiz, 1957. 

Translated by W. H. Furry 
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