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The method previously proposed by the authors1 for practical construction of angular opera
tors, in which one uses only differential operations, is applied to studying the change in the 
form of the angular operators resulting from the adding of a new orbital angular momentum 
or an integer spin to the process. Formulas for practical computations and examples are 
given. 

INTRODUCTION 

IN studying processes in which more than four 
particles participate, the computation of the angu
lar operators (their definition and properties can 
be found in references 1 - 3) becomes very com
plicated and long. The practical question therefore 
arises of obtaining a complete set of angular op
erators for a given process on the assumption that 
one knows the angular operators for a simpler 
process. In its simplest form* this question can 
be expressed in the form of the relation 

n n 

or 
n n 

Q 0 }f(a----+ ~a;)= ?f(a + s----+ ~ aJ 
1 1 

In other words, the operator Q 0 "adds" a new 
scalar particle to the process. However, it is 

(1) 

not difficult to show that this question can be 
formulated as a special case of the problem of 
finding an operator Q, which changes the quantum 
number of one of the angular momenta in the reac
tion from l to l', without changing the number of 
particles participating in the process. This 
enables us to find a complete set of angular opera
tors for the process if we know just one term of 
the set. Therefore we shall first find the explicit 
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*The symbols a, ail ai denote any particles or nuclei, s is 
a particle with spin zero, ?f is the angular operator for the 
process written inside the parentheses. 

form of the operator n, and then in Sec. 3 express 
~ in terms of n. 

It will also be shown that the proposed method 
can be used also for finding angular operators for 
a process in which, compared with the initial 
process, one scalar particle has been replaced by 
a vector or a tensor particle. 

1. CHANGE IN QUANTUM NUMBER OF AN 
ORBITAL ANGULAR MOMENTUM 

Let us consider reactions of the type 

a1 + a 2 ----+a~ + a; + ... + a~ 
and decays of the type 

(2a) 

(2b) 

In processes of type (2a) there is one initial and 
k - 1 final unknown orbital angular momenta in 
the system of the center of mass. [In the decays 
(2b) there are no initial orbital angular momenta. ] 
If we also include the spins of all the particles in 
the processes (2a) and (2b), then there are alto
gether M initial and N final independent angular 
momenta, where 

depending on how many particles with non-zero 
spin are present. If M and N are greater than 
unity, these angular momenta can combine with 
one another into total angular momenta; in this 
process the number of initial angular momenta 
increases up to 2M - 1 and the number of final 
angular momenta to 2N - 1. All these angular 
momenta and the corresponding quantum numbers 
will be denoted (without distinguishing orbital, 
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spin, and total angular momenta) by the symbol l 
with different subscripts. 

Let us consider any process of type (2a) or (2b). 
Let us assume that its initial and final states are 
characterized·by complete sets of quantum num
bers for the angular momenta. Let us consider 
three angular momenta la, lb, lc of the set for the 
final state, and assume that they are connected by 
the relation 

(3) 

As yet we make no assumptions concerning the 
nature of the angular momenta la and lb. The 
angular operator Jf with the quantum numbers la, 
lb, and lc can be written in the form 

(4) 

where 

and where the XlcM are functions of the other 
variables in the process, and do not depend on la 
and lb. If on the right side of (4) we substitute in 
place of the function "IJI the functions W' with the 
same values of lc and M, but with different la and 
lb, then the expression 

is another angular operator for the same process. 
Therefore the transition from Jf ( ••• lalblc . .. ) to 
'(f ( .•• l!J.l"blc ... ) is equivalent to a transition on 
the right-hand side of (4) from "IJI to W', and can be 
described formally as follows: 

vector operators A, B with the commutation 
relations 

Uai, Aj] = i ~ Bijk An, 
k 

[lbi, Bj] = i ~ B;jk Bk 
k 

(ijk = xyz, Bxyz = I), (6) 

then the matrix elements of their scalar product 
are equal [ cf., for example, reference 5, formula 
(3.101)] to 

(La+ r, Lb + s, L~, M' jAB i La, Lb, Lc, M) 

=<La+ r: A! la) (lb+s: B: lb) xrs b / l bM'M• (7) 
c c 

where the xrs are numerical coefficients having 
the values 

X11 = - t rUa + Lb + Lc + 3) Ua + Lb + Lc + 2) 

X (/a+ Lb + 2 -Lc) (/a+ Lb + I -Lc)J'I•, 

X10 =- -i[(lc+La-Lb+ l)(lc+Lb-fa) 

X (/c + la + lb + 2) (/a + lb -lc + I )]'I•, 

1(,1- 1 = -i [(lc +La -Lb + I) (/c +La -Lb + 2) 

X (lc -La+ h- I) (/c -La+ Lb)J'h, 

1(,0- 1 = + [(lc -La+ Lb) (lc +La -Lb + I) 

X (lc +La+ Lb + 1) (/a+ lb -Lc)J'h, 

x,-1- 1 = - t [(/a+ Lb + Lc + I) Ua + h --l- Lc) 

X (/a+ h-Lc) (la+lb -lc -I )]'I•, 

with the symmetry properties xrs ( la, lb, lc) 
= (-1)r + sxsr(lb, la, lc). The symbol 
<la + r: A: la> is defined by the relations 

(La+ I : A; La) = [(La+ 1 )2 - m!J-'1• (Ia + I, ma I Az JLa, ma), 

(La: A: La) = m-;;1 (La, ma I Az !La. ma), 

i.e., we have 

(5) (La- I :A ; La) = (/!- m~)-'i• (La- I, ma I Az [La, ma>· (8) 

Analogous relations hold for < lb + s : B : lb >. 

(5') 

where the operator Q depends on la and lb and is 
a scalar with respect to simultaneous rotations of 
the spaces characterizing la and lb.* 

The fundamental problem is to. find the explicit 
form of nrs for the case 13. = la + r, l"b =·lb + s, 
where r, s = 1, 0, -1. All the. other cases are 
solved by repeated application of the nrs ( cf. 
Sec. 3 ). 

Let us use Johnson's theorem:4 If there are 

*The angular operators Jf are scalar with respect to simul
taneous rotations of all the orbital and spin dynamical vari
ables of the process. 

To raise or lower la and lb we need operators 
nrs whose matrix elements are all equal to zero, 
except for the one where we have on the left <la 
+ r, lb + s, lc, m I and on the right lla, lb, lc. m >. 
We shall write them as scalar products of two vec
tors A<r>, B(s) of the type of Eq. (6) which, ac
cording to Johnson's theorem, should have the form 

<L + r' : A (r) : L ) = (L + r : A (r) : l ) " , a . . a a , , .a Urr , 

(lb + s'; B<s> : lb) = (lb + s; B<s>: lb) bss'· (9) 

Then, according to Eq. (7), the matrix elements of 
A(r).B{s) will be 

(la + r', lb + s', l~, M' I A<r> s<•> !Lalbt;M> =(La+ r: A<r>: La) 

(lb + s: B(s): Lb) xrs brr' bss' b z-z'bMM'· 
c c 

(10) 
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Consequently, the operators 

grs Ua Lb Lc) = A (r) B(s) I%" <la + r: A(r): La) <h + s: B(s): Lb) 
(11) 

have the required properties [ cf. Eqs. (5) and 
(5') ] : 

In other words, 

grs Ua Lb lc) ?f ( .. . La, Lb, Lc . .. ) = ?f ( .. . La+ r, Lb + s, Lc . .. ), 
(12) 

where r, s = 1, 0, - 1. 
In order for formulas (12} and (11) to be prac

tical, one must find the explicit form of the vec
tors A(r) and B(S) having the properties (6) and 
(9). The next section is devoted to this problem. 

2. EXPLICIT FORM OF THE VECTORS A(r) 

The explicit form of the vectors A(r) depends 
on whether the angular momentum la is the sum 
of two (or more) angular momenta or not.* 

1. Let us first assume that the eigenfunction 
1/Jzama is a spherical harmonic: 

This corresponds to the addition of angular mo
menta 1 = 11 + 12• If now we apply to 1/Jlm a vector 
operator l 1i ( i = x, y, z), then, according to the 
general theory ( cf. reference 5), we obtain a 
mixture of states lfJZ+ 1, 1/Jz and l/Jz_1• It is then suf
ficient to apply the projection operators Z0Z_, 
Z_Z+ and Z+ Z0 where 

Z0 =J2-l(l+1), Z_=J2-l(l-1), 

z+ = J2- (L + 1) (I+ 2), 

in order to obtain the pure states l/Jz+1, 1/Jz, and 
l/Jz_1 respectively. Thus it is easy to see that the 
operators A±1 will have the form: 

A<=n = V'l:l == Z-;:. Z0 11 • (16) 

The computation of v±1 from formula (16) ( cf. 
reference 8) gives the result 

V±1 = 211 {I (I+ 1) -11 (11 + 1) + 12 (12 + 1 )} 

- 21 2 {I (I+ I)+ 11 (11 + I) 

-/2 (12 +I)}+ 4i (±I++±--}) [h lzl· 

The operator A 0 is obviously the total angular 

(17) 

'¢lama = Ytama (p), 

where la =- i [p X ajap]. 

(13) momentum: 

If la is an angular momentum, then p will be 
the unit momentum vector p = P/P; if on the other 
hand la denotes an integer spin, then p will be 
the spin variable a. 

Omitting the mathematical derivations ( cf. 
reference 8), we give only the final results t 

A (1) = y+1 = pt+2 _i_ p- U+1l A (O) = yo = 1 = _ i [Px~J - aP ' - ap• 

A <-1) = y-1 = p-<t_:li a~ Pt. (14) 

It can be shown by direct calculation that the 
vectors Y'+ 1, Y'0, Y'-1 satisfy the commutation 
relations (6} and have the property (9). From (8) 
and (13) it also follows that 

<I + 1 : y+1: I) = --. /21 + 1 (l: yo:/) = 1 ' ' v 21 + 3 ' ' ' ' 

(l _ 1 : y-1 ;/) = v~: ~ ~ . (15) 

2. Now let us assume that the function 1/Jlm is 
a combination of two or more spherical harmonics: 

(13') 

*All the formulas of this section are obtained only for vec
tors A(r). The corresponding formulas for B(s) are obtained by 
the trivial replacements 

A ---> B, r --->·S, •· ·Ia -> lb, ma --->•mb, 1jJ---> <p. 

*Here and in what follows we drop the subscript a on l 8 , 

m8 , etc. 

(17') 

[ cf. Eq. (14) ]. 
The matrix elements of the vectors v+1, VO and 

v-1 are equal to 

(11 12 1 + I ; VI: 11 L2 l/ 

,~ 2 V ;: t! [(l + I -l1 + l2)(l + I + 11 -Ia) 

X (11 + l2 + l + 2) (!1 + lz -I )]'I', 
(/1 12 1: V0 : 11 L2 l) = I, 

,_) 1 12 1- I : v-1 i L1 l2 l/ ~ 2 -v~; ~! [(l -/~ + lz) (l + l1 -lz) 

(18) 

All the other matrix elements are equal to zero, 
as they should be according to formula (9}. 

3. ANALYSIS OF RESULTS 

1. Formula (11) determines the operator grs 
by means of which we can, according to (12), 
change the quantum numbers characterizing the 
angular operators ?f of a given process by one 
unit. The vectors A(r) have the form either of 
the vectors vr of formula (17) or the vectors 
Y'r of formula (14), depending on whether the 
corresponding angular momentum Ia (whose 
quantum number is to be changed) can be written 
as a sum of two other angular momenta la1 and 
la2 or not. 
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2. Increasing or decreasing la, lb by any 
integer > 1 is achieved by repeated application 
of the operator nrs. Thus, if we know one angular 
operator for the given process, we can by means 
of nrs obtain all the others. 

3. As was .already stated in the introduction, 
the operator Q can also be used for going over to 
a more complicated process containing one more 
scalar particle than participates in the original 
process [ cf. formula (1) ]. This is related to the 
fact that the spherical harmonic Y00 is equal to 
the constant 1/ ..f4ir so that the introduction in the 
process of a new orbital angular momentum l 
with quantum number l equal to zero reduces to 
multiplying the whole set of angular operators by 
1/ ../4ir. For example 

[,, = 0. 

Having determined in this way the angular 
operators for the new process for ls' = 0, we can 
by using Q ti ( 0, l, l) increase the value of ls' to 
unity. Similarly, the operator nti ( 1, l', l) in
creases ls' from 1 to 2, etc. 

Let us take, for example, the process s 1 + s 2 

- s1 + s2, characterized by the following angular 
operators, (ff' z is a Legendre polynomial): 

~L ( ' ' _L ') - 21 + 1 o/iJ ( ) l- 0 1 2 l19) (J t s1 1 - s2 -> s1 , s2 - ~ iT 1 pr , - , , , ..• 

Multiplying by 1/ ..f4ir we obviously obtain lfls 1, l, l 
( St + s 2 - s1 + s2 + s:l), where ls:J = 0 and l 
= 0, 1, 2 . . . According to (11 ), (15 ), the operator 

Q1' (0, l, l) = V/i1 vQ 1 x,U (I : V/i1 : O) <l + r: vQ :t> 
increases ls:J from zero to unity: 

Q 1' (0, l, l) lfo. 1. 1 = /f1. t+r. t• 

For convenience we give the following general 
formulae which are useful in particular compu
tations: 

V~(l)f(pr) =- i [ Rx a~] f(pr) = i [pxr] f', 

V/i1 (l) f (pr) = R1+2 a~ R- U+l> f (pr) 

= - (l + I) rf + (p - r (pr)) f', 

V"R1 (l) f (pr) = R- <l-1> a~ R1 f (pr) = lrf + (p- r (pr)) f', 
(20) 

and note that 

(20') 

By means of these formulas we obtain, for example, 
for r = 0, 

1!1. ___ 1 _ i (21 + 1) l'3 r [ x l GJ! 
rn.l.l- (4:rt)'/, Vl(l+1) p q. t 

(21) 

and similarly for l + r = l + 1 (ff'z depends on p · q ). 
Continuing further, we can obtain lfls:J, l, l for 
ls:J = 2, 3, etc. For example, 

1!1. -- l'5 21+1 {l(l+l)ff' 
(J 2ll - (4:rt)'/, [Z (Z + 1) (21-1) (21 + 3)]'/, 1 

-3 (pq- (pr) (qr)) ff';- 3 (r (pxq])2 5";}. (22) 

4. The introduction of an integral spin can be 
done in similar fashion. One need only make the 
formal substitution 

ri-+e; V4nj3, i = x, y, z. (23) 

In this way, we obtain angular operators for proc
esses of the type 

where v2 is a particle with spin 1, 2, 3 etc. For 
example, in the case of a particle with spin 2, we 
obtain from (22) by using (23) 

= - vs 21 + 1 {6a. t (l + I) .Gf'l 
If 3 V43i: [Z (Z + 1) (21- 1) (21 + 3)]'1• ~ 

- 3 (pq <'la.l>- Pa. qfl) ff';- 3 [pxq]a. [pxq[~ .'J";} ea ell. 

We note that for spin 1 the form of the operators 
Q simplifies considerably if we use (20')and (23): 

Ql = 1 y+l go = 1 vo 
V(l+1)(2Z+1) ' Vl(l+1)' 

u-1 = 1 v-1. 
V l(:U +1) 

It is known that these operators transform the 
spherical harmonics Yf into spherical vectors. 

5. Let us show on a few examples how one can, 
by this method, obtain from the operators for the 
reaction 

s+N-+s'+N' (24) 

the angular operators for the reaction 

which were given in Tables I, II and III of our 
earlier paper.3 It is known that the angular opera
tors for the process (24) have the form* 

{(l' +I) ff'r + iaPuff';,} I 4:rt for j' = l' + 112 = l + 1/ 2 = j, 
(25.1) 

{-(!'+I) ap.Gflt' + aPx.Gfl;} I 4:rt for j' = l' + 1/ 2 = l- 1h = j, 
(25.2) 

{-l'apff'r- aPxff';,} I 4:rt for j' = l' - 1/2 = l + 1la = j, 
(25.3) 

*In the following we shall use the notation introduced in 
reference 3 and also used in Sec. 5 of reference 1. In particu-
lar we recall that Py = [pxrl, P x = r- p(p • r). 
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{l'ffot·- iaPy.'fc>;.} I 41t for j' = l' - 112 = l- 112 = j, (25.4) 
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where l' is the orbital angular momentum of the 
final state and the Legendre polynomials ff'z' depend 
on p · r = cos e. We note that s, s', s 1 and s2 cor
respond to particles with spin zero and without 
definite parity; if the parities of s and s' are the 
same, only the first and fourth channels are 
allowed. 

a) The four angular operators of Table I in 
reference 3, corresponding to the quantum num
bers Z1 = 0, Z2 = l', can be obtained from (25.1) 
- (25 .4) by multiplying by 1/ fu: ( I1 ) = ( 47T rt/2 
x (25.1), (I2) = (47Tf112 x (25.2), etc. 

b) The first four angular operators (Ill 1 - 4) 
of Table Ill in reference 3 can be obtained from 
(I 1 - 4 ) in the following fashion: 

.Q1° (/1 = 0, ~, j =~)(I I; 2; 3; 4) = (Ill I; 2; 3; 4), (26) 

where* 

.Q10 = v~ v~ I x1o <I : v1: 0> < ~: vo: ~ > = - aq. 

Let us, for example, verify the second of the 
relations (26). We have 

- aq (I 2) = ( 4n)-'1• {!2 + I) ( aq)( ap)Y't, 

- (aq)(aPx)JJ~,} = (III. 2). 

We note that the angular operators (I 3) and 
(IT 7) can be associated with diagrams which 
clearly show the connection of the orbital angular 
momenta ( cf. Fig. 1 ). The angular momenta of 
the initial state are on the right, those of the final 
state on the left. To each angular momentum 
there corresponds one line, where a spin Y2 is 
indicated by an arrow. From the diagram it is 
also clear how the operators Q act. 

FIG. 1 

c) Let us calculate the angular operator (III 7) 
by means of (Ill 1) ( cf. Fig. 2 ). We have 

Qlo = y 1 v 0 I vlo <.!_ i VI ~ __!_> <l : vo: l > J fz A 2 1 E 2 2, . 2 

=- V} v~./ 4 Yls(2ls + 3), 

where vj and vz are equal, according to (14) 
and (17), to the fo1lowing expressions: 

*The results of Sec. 2 are valid for an orbital angular mo
mentum and an integer spin, but the relation V0 • a/2 analo
gous to the second of formulas (14), is also valid. 

FIG. 2 

vj =- 11- 2a- 3i [aid, 

v'1, = 12, 

11 =- i [Q Xi} I iJQJ; 

lz =- i[RXiJfiJRJ. 

The computation gives the result 
Q~o (III 1) = - ( 4n)-'l• [l2 (2!2 + 3)]-'/. {(i (2!2 + 3) Py q 

- (l 2 + 3)( ar) (pq) + l 2 ( ap) (rq) + ( aq) (pr)) 3";, 

- (3 ( aPy) (Pyq) + aq ((pr)2 - 1 )) 3";,}. (27) 

We note that in this way we can obtain the angular 
operators in a much simpler form than they were 
given in reference 3. 

CONCLUSION 

From the analysis given we see that the pro
posed method for computing angular operators is 
simpler than the algebraic methods which are 
usually used. In particular, it is simpler than the 
method given by the authors in reference 3, and 
besides it has a more general applicability. As is 
known, the algebraic methods (which make use of 
the Clebsch-Gordan and Racah coefficients) lead 
to difficult computations which restrict their ap
plicability in angular and polarization analysis to 
only the simplest processes. On the other hand, 
the differential methods retain their simplicity 
even in the case of complex processes. Besides, 
if one knows one or more angular operators, the 
computation is simplified, since the proposed 
method is a recursion method. 
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