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We investigate the properties of dressed particle operators, defined as producing single par­
ticle states when acting on the vacuum. Haag1 has shown that the dressed particle creation 
operators have a strong-convergence limit for infinite time. We show that this is also true 
for the annihilation operators. Assuming the possibility of a coupling-constant expansion, we 
show that the dressed operators cannot satisfy the causality condition in its usual form. 

1. INTRODUCTION 

IF one could construct a field theory based on 
"dressed" particle operators (as opposed to the 
usual "bare" particle operators), one would no 
longer need to go through the renormalization pro­
cedure; in principle such an approach, making use 
of no nonphysical quantities, would be the more 
systematic one. Nevertheless, the actual use of 
dressed operators is still restricted to the Schro­
dinger representation, for the properties of the 
corresponding Heisenberg operators are not yet 
well enough understood. It is known only that for a 
large time the dressed creation operators con­
verge strongly to the so-called in and out creation 
operators 1 and that the dressed operators cannot 
satisfy the bare-operator commutation relations 
so long as the interaction fails to vanish. 1•2 

In this communication we establish some other 
properties of dressed operators. Section 2 dis­
cusses some equivalent definitions of dressed op­
erators. Section 3 extends Haag's results 1 to anni­
hilation operators [strictly speaking, we shall 
prove not that the dressed annihilation operators 
converge strongly to the bare one, but, like Haag, 
the somewhat weaker result of Eq. (13) ]. Section 
4 is devoted to causality properties of dressed 
operators. In it we show that these operators can­
not satisfy the causality condition in its usual form, 
i.e., that their commutator does not vanish on a 
space-like surface. The proof is based on perturb­
ation theory. 

For simplicity we shall deal only with scalar 
particles of a single kind. 

2. THE CONDITION THAT THE OPERATORS 
DESCRIBE DRESSED PARTICLES 

Let us define a local Lorentz-invariant dressed 
particle operator Q (x) by the condition that 

919 

Q<+) (k, t) I O> = i k>. (1) 

Here I 0 > is the physical vacuum, I k > is a 
single-particle state corresponding to 4-momentum 
k (with k2 = p.2 ) and such that 

<k 1 k'> = 2kof'J (k- k'), (2) 

and, as usual, 

Q<±J (k, Xo) = =t= i ~ daxQ (x) o~o e+ikx 

==-.- i \ dax ~Q (x) .!.___ e+ikx- e'f-ikx _a_ Q (x)}. (3) 
1 .) l OXo OXo 

Condition (1) agrees well with the physical meaning 
of a dressed operator. 

We now define in and out operators according to 

A~~~ (x) = Q (x) + ~ 11~~r (x- x') j (x') d4x', j (x') 

(4) 

It is known1--3 that the A?~t ( k, t) operators are 
independent of t and that- they satisfy the usual 
free-particle commutation relations. It is known 
also that 

A~~) (kl} • • • A~~) (kn} I 0) = [ k1 • • · kn)in 

is an energy-momentum eigenstate describing n 
particles with 4-momenta k1 ••• kn (with ki = p. 2 ) 

before collision (and similarly for out operators). 
Further, 

<+> I <+> o I Ain (k) 0) = A out (k) J ) = k). 

The relation between Q (±) ( k, t) and, for in­
stance, A~±) (k) is, according to (3) and (4), of the 

m 
form 

(5) 

Condition (1) that the operators describe dressed 
particles states that 
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[AJ:> (k)- Q<+) (k, t)] I 0) 

= i ~ d4x6 (t- x) j(x) e-tkx ! 0) = 0, 

from which it follows immediately that 

j (x) I 0) = 0. (6) 

Note that this equation has been obtained as a 
consequence of (1). It is clear also that (1) is a 
consequence of (6). Furthermore, it is seen from 
(5) that (6) implies also that 

[At;> (k)- Q<-) (k, t)) I 0) = 0, 

so that 

QH (k, t) JO) = 0. (7) 

Thus conditions (1), (6), and (7) are shown to be 
equivalent. Any one of them may be used as the 
condition that the operators describe dressed par­
ticles. 

We remark also that together (1) and (7) lead to 
yet another form of this condition, likewise equiva­
lent to those above, namely 

Q(x)IO) =A~~~ (x)JO>. (8) 

This condition was used by Greenberg. 2 

As a further remark we point out that all this 
can also be formulated in terms of state vectors.4•5 

To do this we introduce the asymptotic states wa, 
satisfying the conditions 

<'Y: I'Y~)=G(I, 2)=~(1, 2)+g(I, 2), 

('F~ )2)1n = b (I, 2) + r<±> (I, 2)/(El- £2 + iO), (9) 

(where g ( 1, 2) and T(±) ( 1, 2) are smooth func­
tions) as well as the requirement that the vacuum 
and single-particle states of wa are I 0 > and 
I k>, respectively. The relation of this to the pre­
viously defined dressed operators is given by 

'Yac (kl ... kn) = Q(+) (kl> 0) ... Q(+) (kn, 0) I 0). (10) 

3. STRONG CONVERGENCE 

To study the behavior of the dressed operators 
as t- ± 00 , we go over in the usual way to wave 
packets and introduce the Q(±) (x0 ) operators, 
which are defined analogous!~ to those of Eq. (3), 
except that e'fikx is replaced by f~) (x), a posi­
tive- or negative-frequency solution of the Klein­
Gordon equation with mass p., orthonormalized 
according to 

(11) 

and such that ( f~ > )* = f:X>. 

By postulating the behavior of the vacuum ex­
pectation values Q (x) for equal times, Haag1 has 
shown that 

(+) (+) ) I 0 ~ I Qa., (/) •.• Qa.n (t , ) ~ ot1 • • • otn)in (out) • (12) 

Here the symbol ::::: indicates strong convergence, 
and I at ... an>in(out) is an n-particle in (or out) 
state in which the wave function of the m -th parti­
cle in x -space is faro (x). 

We shall show that if the vacuum expectation 
values behave according to Haag's postulate, then 
in addition to (12) we have 

<-> <-> <+> <+> I o Q13, (t) ... Qlln (t) Qa., (t) ... Qa.m (t) ) 

{
0, 

~ ~ 613, .. , .• • 613 ... I a.; + ···a, )tn <out>· t--<+>oo £.J • n 1 n n 1 m 

m<n 
m-;pn 

(13) 
(the sum is taken over all permutations i1 ••• in 
of 1. .. m ). 

It is known that (12) does not, strictly speaking, 
imply 

Q~+> ~ A~:~ <out> as t ~ - ( +) oo, 

although this convergence seems highly probable 
(see, for instance, Haag1 ). Similar considerations 
relating to (13) lead one to believe that 

(-) <-> 
Q" ~Aaln(out> as t~-(+) oo 

and that therefore the difference between Q (x) 
and A in (out) (x) converges strongly to zero as t 
--(+)oo. 

Equation (13) is proved in analogy with Haag's 
proof of (12). For simplicity we consider the case 
m = n = 1. Consider the expression 

(0 I [Qf) (t) Q~+) (t)- Q~+) (t) Qfl (/) -l\cx(3t 

X [Q&-> (t) Q~+> (t)- Q~+) (t) Q&-> (t) -1\a.lll j 0) (14) 

for large I t 1. As Haag has shown, the vacuum ex­
pectation value of products of Q~) ( t) operators 

reduce, as It I - oo (up to terms of order C3 ) to 
the sum of products of vacuum expectation values 
of pairs of Qf;> ( t) and Qh-> ( t) operators taken in 
the same order as in the original product. In par­
ticular, for (14) we have, as It I- 00 , 

<O I Qr> Q&+> I O> <O I Q&-> Q~+> I 0> 

- <O I Q&+> Q~-> I O> <O !Qf> Q~+> I o > 
- <0 I Q~-> Q&+> I 0> <O 1 Q~+> Q&-> iO> 

+ <O I Qr> Q~-> I 0> <O I Q~+> Q&-> I o > 

- 211a.ll <O I Q~> Q~+> I O> + 211 .. 13 <O I Q~+>Q&-> I O> + llall· 

We now find by using conditions (1) and (17) that 
this expression vanishes, or that 
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Jim II [Q);l (f)Q~+) (f)- Q~+) (f) Q&-) (f)- 611fl]l 0) II= 0. (j)mn (PI • · · Pm I qi · · · qn) = (jl~m (qi · · · qn f PI • · · Pm)· 
Ill-+ oo 

On the other hand, we know that Q&-> ( t) I 0 > 
= 0, so that 

q.e.d. 

Qf> (t) Q~+> (t)IO>:::t6afliO>, 
t--+± 00 

4. CAUSAL PROPERTIES OF DRESSED 
OPERATORS 

It is well known that the condition that Q (x) be 
a dressed operator does not define it uniquely. 
One is then led naturally to look for additional 
restrictions which will pick out the most "physical" 
or "convenient" of all possible Q ( x) operators. 
One would suppose that the causality condition 
would serve this function (see, for instance, 
Greenberg2 ); we write the condition in the form 

[Q (x), Q (y)] = 0 for (x- y) 2 < 0. (15) 

In this section we will show that dressed oper­
ators cannot satisfy (15). Since the commutation 
relations of the Q (x) operators are not known, we 
shall make use of perturbation theory. Actually 
what we will show is that the condition that the op­
erators describe dressed particles leads to 

Let us think of the cp mn functions as expanded 
in a power series in the coupling constant, and let 
us consider only those terms linear in g (which 
we shall denote henceforth simply as (/Jmn>· We 
remark that all the cp mn cannot vanish in the first 
approximation in g, for this would contradict the 
very meaning of a coupling constant. 

As a basis for proving (16) we shall use condi­
tions (6), which leads obviously to 

!Jlmo = !Jlom = 0. (18) 

The commutation relations of the Ain are well 
known, and there is no difficulty in calculating the 
matrix elements of the commutator of Ain (y) and 
j (x) between any in states. We obtain 

1 
Zmn (y, X)= ~r- in(Pl· · · Pm I [Atn (y), j (x)JI qi · · · qn)in 

t' m!n! 

X {!Jlm+I. n (kpl ... Pm I qi ... qn) e-ik (y-x) -v m + 1 

- !Jlm, n+l (PI · • · Pm I kqi · · · qn) efk (y-x) V n + 1} (19) 

( in the integrand k2 = JJ.2). 

Let m = 0, n ¢ 0. It then follows from (18) that 

(Atn(out) (y), i (x)] =I= 0 for (x- y) 2 < 0. (16) Zon (y, X) 

This means that in the first approximation in the 
coupling constant g, the commutator [ Q ( y ), j (x)] 
¢ 0 for ( x - y )2 < 0. It follows then that 
[Q (y), Q (x)] ¢ 0 for (x- y)2 < 0, also in the 
first approximation in g. If the perturbation 
theory expansion converges at least asymptotically, 
this means that the causality condition (15) cannot 
be fulfilled (except perhaps for special values of 
g such that the higher approximations cancel the 
first). 

We proceed to prove (16). Let us expand the 
current j (x) in a Fock series in the A in (or, 
equivalently, Aout) operators: 

'() _ ~ \d2pl lf8q1 fmn(Pl .. ·PmiQl·•·qnJx) 
1 X - k.J .) 2Plo · · · 2qto · · · f m! n! 

m.n=O 

x A~~> (Pt) ... A~~> (Pm) A~~> (qi) ... A~~> (qn) 

(here Pi = qk = J.L2 ). Considerations of Lorentz 
invariance lead to 

f mn(Pt · · · Pm I ql • · · qn I X) 

= exp{i (~P- 2} q) x}<llmn (PI··· Pm I ql. · · qn), 

(17) 

where C{Jmn is a scalar function symmetric in the 
Pi and qi separately. Because the current is 
Hermetian, 

= (2n)-'!. exp {- ix ~ q} ~ ~~k e-ik <u-xlcpln (k I ql ..• qn)· 
0 (20) 

The right side of (20) cannot vanish for (x - y )2 

< 0 so long as C{Jm ~ 0. Indeed, for x0 =Yo we are 
left with the ordinary Fourier transform. If the 
right side is to have a o -function singularity, the 
integrand must contain a polynomial in I k I, which 
is clearly impossible because of the 2ko in the de­
nominator. Thus if [Ain(y), j (x)] = 0 for (x-y)2 

< 0, we obtain 

<pi,. = <!lni = 0. 

Now consider the case m = 1, n ¢ 0, 1. We 
have 

Z1n = -,12(2:rt)_,.,exp{i (P- 2}q)x} 

\ d3k ik (y-x) (k \ ) X j 2ko e- !Jl2n , P qi · .. q, . 

Similar considerations lead to the conclusion that 

Continuing in this way we can prove finally that 
if [Ain(y), j (x)] = 0 for (x- y)2 < 0, all the 
cpmn functions vanish, contrary to assumption. 
Thus we have proven (16). 



922 M.A. BRAUN and Yu. V. NOVOZHILOV 

In conclusion we should like to mention that it 
seems to us quite natural that the dressed opera­
tors do not satisfy the causality condition in the 
form of (15). This must, of course, be related to 
the smearing out of the physical particles over 
some region whose radius is of the order of 1/f.l. 
This behavior of the dressed operators, however, 
is a serious obstacle to using them in constructing 
a Lorentz invariant formalism for scattering 
theory. To obtain such a formalism is the fore­
most problem in the theory of dressed particles. 
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