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The problem of the evaluation of the partition function can be reduced to the problem of find
ing the trace of the operator ( H + p) - 1 where H is the energy operator and p a complex 
parameter, if one uses Laplace transforms. One can use this fact to find the partition func
tion for a fairly wide class of energy operators H in the form of a power series in 1/kT. 

INTRODUCTION 

JF one wishes to evaluate the partition function 

Q = ~ exp (- En I kT) 
n 

of a physical system, there are some useful 
methods which enable one to evaluate Q without 
knowing the eigenvalues En of the energy operator 
H of that system; these are based upon the possi
bility to write the partition function as the trace of 
the operator exp (- H/kT ). We may mention here 
the method of expanding Q in a power series in ti 
(see, for instance references 1 and 2) or in a 
power series in some other small parameter on 
which H may depend. 

One is, however, not able to use such methods 
to expand Q in powers of T or 1/T, so as to be 
able to evaluate the thermodynamic functions in 
the corresponding temperature ranges. A formal 
expansion of Q in powers of 1/T by using the 
definition of the operator 

' 1 ' 1 H2 1 fl3 
exp (-HI kT) = 1 - kT H +- {kT)Z F- (kT)" 31 + · · ·' 

yields nothing, for although one can easily evaluate 
the matrix elements of the operator H:n I ( kT )nn! 
for not too large values of n in any suitable repre
sentation, the trace of such an operator turns out 
to diverge. 

We shall give in the present paper a method 
for expanding the partition function in powers 1/kT, 
based upon the application of the Laplace transfor
mation to the function Q ( 1/kT ). 

THE USE OF THE LAPLACE TRANSFORMATION 
FOR THE EVALUATION OF THE TRACE OF 
THE OPERATOR EXP (- TH) 

When we use the Laplace transformation (see 
reference 3) we change from the function Q ( T ), 

which is defined by the equation 

Q (T) = ~ exp (-TEn) 
n 

(En are the eigenvalues of the Hamiltonian f!. of 
the system, and T = 1/kT) to its transform Q ( p). 
One sees that the function Q ( T) satisfies all re
quirements necessary for it to have a Laplace 
transform. 

The transform of the function exp (- TEn) is 
the function (En + p ) - 1, 

exp (-TEn)~~ (En+ Pt1 • 

Using the fact that the Laplace transformation is 
a linear operator we find 

- 1 1 
Q (p) = ~En+ P = Sp H + P . (1) 

n 

When we have evaluated the trace of the opera
tor ( H + p) - 1 we find the partition function by 
taking the inverse Laplace transform. The advan
tage of this method is that it is in most cases 
simpler to evaluate the trace of the operator 
( H + p) - 1 than to evaluate the trace of the opera
tor exp (- TH ). This is connected, first, with the 
fact that one can use the Green function of the op
erator H + p to evaluate the trace of the operator 
( H + p) -1, and, second, with the possibility of 
using the results of a number of mathematical 
investigations which have been published recently. 
In these papers methods are developed for the 
evaluation of the trace of similar operators, 4•5 

and we can use the results of these papers together 
with the method presented here to evaluate the 
partition function.* 

If the Green function G ( r, r', p) of the opera
tor H + p is known (see, for instance, reference 
6) one can find Q ( p) by means of the equation 

*See references 7 an~ 8 for some applications of Eq. (1) 
in quantum statistics. 
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- 1 \ 
Q (p) = l En + P = ~ G ( r, r, p) dv, 

n 

where dv is a volume element and where the in
tegration is over the region where the operator 
H is defined. 

An explicit expression for the Green fWlction 
is known only for some simple operators, for in
stance for the operator d2/dx2 + p and its deter
mination is connected with appreciable difficulties. 
It is therefore natural to use other methods which 
are ~ased upon an application of Eq. (1) to evalu
ate Q (p ). 

EXPRESSIONS FOR Q ( T) FOR DIFFERENT 
CASES 

The final result of a calculation of the partition 
function is independent of the set of basis func
tions in which the trace of the operator ( H + p) - 1 

is evaluated. For some particular cases one can 
use directly the results of a paper by Diki14 to 
evaluate the trace of the operator ( H + p) - 1; in 
that paper he foWld an expression for the trace of 
the operator [ - do/ dx2 + V ( x) + p ]-1• 

In Dikil's paper the operator H had to satisfy 
the condition that all odd derivatives of the poten
tial energy V ( x) vanish at the end points of the 
interval 0 - 1r, and the eigenflUlctions 1/Jn of this 
operator had to satisfy the bolUldary conditions 
1/J ( 0) = 1/J ( 1r) = 0. The trace was evaluated in the 
bas is of the functions ../2/ 1r sin nx. 

Let our energy operator be of the form 
A fi2 d2 
H=-- -+V(x) 

'Lm dx 2 

and let it satisfy all conditions mentioned a mo
ment ago. We find then from theorem (5.1) of 
Dikil's paper4 

' fi2 d2 \ -1 

Sp (- 2m dx2 + V (x) + P) 

m 00 (-1)k(fi2)k+'l• "~ ( 1 ) = - ......, -- . . A2k k- T, x dx 
fi2 ..c:.J pk+'l• 2m , 

h=O 0 

00 h k 2h + ......, (-1) I!!:'!.._) ......, (2i)i-2k-2 [A)2k-l)(k, 0) 
~ pk+1 ~2m ~0 

+ A)2k-l) (k, n)}. 

Here k, l, m, and s are integers; 

I 

At(s, x) = l; C(z+m) t 2 Bz. m (x), 
m=o 

where crz+m)/2 is a binomial coefficient, and the 
flUlctions B1,m are determined by the recurrence 
relations: B0, 0 (x) = 1, and B1,m(x) = 0 if either 
l or m < 0, 

Bz.m (x) = - B;·-2. m (x) + V (x) 2m1i-2 Bz-2, m (x) 

+ 2iB;_J. m-1 (x). 

Using operational techniques to change over 
from Q (p) to its inverse Laplace transform we 
find, according to what we said earlier, the initial 
expression for the partition function Q ( T) 

1t 

1 00 k-11 fi2 )k-11. \ 
Q ('r) = T l; (- I )k r (~ + :/2) ( 2m ~ A2k (k- 1/ 2, x) dx 

h=O 0 

co k 2k2h + l; ~~ ( _ 2~) l; (2i)t-2k-2 [A)2k-t) (k, O) 
k=O l=O 

+ Afk-1) (k, n)], (2) 

where r is the gamma functio~. 
If the form of the operator H, the region in 

which it is defined, or the bolUldary conditions im
posed on its eigenfunctions are different, the equa
tion for Q ( T) will have a different form. 

Let the operator H depend on three coordinates 
and let it be of the usual form of a single particle 
Hamiltonian 

A fi2 
H =- 2m V 2 + V (r). 

Generalizing the results of Dikil's paper4 to the 
three-dimensional case we write the operator 
( H + p ) -t in the form 

1 00 l amahai 
H+p=l; l;. Bt,m.k.i(r)(ax) (ay) (az-) 

l=O m, h, J=O 

( li 2 2 )-I-(l+m+h+f)l2. 
x -2mv +P (3) 

Our problem is thus to determine the coeffi
cients Bz,m,k,j in such a way that the equation 
indeed holds, i.e., that if we multiply both sides of 
Eq. (3) by H + p they turn out to be equal. Let us 
multiply both sides of the equation from the left by 
:H: + p and let us interchange the positions of the 
\72 and the operator multiplying the function 
Bz,m,k,j by using the commutation relations 

V2 (Bt, m, k, if)= (V2 Bt, m, k, ;) f + Bz. m, k, i (V2 f) 

aB · ar aBt k · at aBz k · ar 
+ 2 l,m,h,J _ 1 2 ,m, .1 -+2-·!'!:.:.._:_!_ -. 

ax ax T ay ay az az 

Equating the coefficients of the same powers of 

we find recurrence relations for the functions 
Bz,m,k,j= Bz,m,k,j = 0, if either Z, m, k, or j are 
less than zero; Bo,o,o,o = 1 

fi2 ( 2m 
Bz. m,·k, 1 = ::.m V2 Bt-2, m, kh + h2 V (r) Bz-z. m,J,, 1 

+ 2 aB t-1. m-1. k. i + 2 aB 1-1. m, k-1. i + 2 aB 1-1. m. k. /-1) • 

~· ~ ~ w 



880 A. A. ZAITSEV 

We note also that Bz,m,k,j = 0, if m + k + j > 1, 
or if l + m + k + j is an odd number, as is proved 
at once by induction with respect to z. 

Let our operator H be defined in a finite, but 
sufficiently large region of the volume b. We can 
then use Eq. (3) for the operator Q (p) and evalu
ate the trace in the base of the orthonormal func
tions u = v-1/ 2 exp [ i ( kzx + kmY + knz )] ( replac
ing the summation over the possible values of k 
by an integration over dk1dk2dk3 ) and so get the 
following expression for Q ( p) 

OJ l l·-m l-m-k 

Q (p) = (2~)" ~ dv ~ dk ~ ~ ~ ~ Bt, m, k, 1 
V l=O m=O k=O /=0 

X (ik1)m (ik2)k (iks)1 .- (k~ + k~ +ki) + P 
" . [ '/i2 . J-1-{l+m+k+il/2 

<.m ~ (5) 

(the limits of the summation are changed here in 
correspondence to the fact that Bz,m,k,j = 0, if 
m + k + j > 1). 

To change over from Q ( p) to Q ( T) we must 
find the inverse transform corresponding to the 
transform 

[ ii• 2 . 2 2 ]-1-(l+m+k+il/2 
Zm (k1 +k2 +ka) + P 

We use the following property of the transforms: 
£(n) ( p )~ (- 1 )n-rnf ( T ). We have therefore 

+k~ + ki) + pr~ . 't(l+m+k+il/2 [(~ + m t k + i).tr1 

X exp {-'t 2~ (k~ +k~ + ki)}. 

Substituting this expression into (5) we get 

OJ l 1-m 1-m-k 

Q ('t) = (:0!)" ~ dk ~ dv 2:; 2:; ~ 2J 'tU+m+k+fl/2 

v l=O m=O A=O /=0 

xexp{- 't 2~ (k~ + k~ + k!)}. (6) 

We integrate now over k1, k2, and k3• It is 
clear that if m, k, or j is odd, the integral 

I= ~dk (ik1)m (ik2)k (ik3)1 exp {-'t 2: (k~ + k: _+ k:)} 

vanishes, while for even m, k, and j it is equal 
to 

I= ( _ t)<m+k+IJt2 ml kl j~. [(.!!!....)! f.!:.._). 1 (L)t J-1 
zm+k+1_ 2 \ 2 ' 2 . 

X1t'/, -'t ( 
1i2 ) -[(m+k+/)/2]-'/z 

2m 

Substituting this expression into (6) we find the 
final expression for Q ( T) 

1 ( li? )-'/, ~ ~~ l~m l-:::1-k( 1i2 )-<m+k+il/2 l/2 
Q('t)=s 1t2m 't .LJ .LJ LJ LJ ,-2m 't 

1=0 m=O A:=O /=0 

ml kl j! [('!!!:._)I (.!:_)'I (i) I 
X zm+k+f 2 . 2 . ~ . 

X c+m;k+i )! rl~Bt,m,k,fdv. 
v 

The summation is over even values of l, m, k, 
and j. 

(7) 

One can use this expression to evaluate the par
tition function for an arbitrary form of the poten
tial energy V ( r) = V ( x, y, z ), and the functions 
Bz,m,k,j are determined from V ( r) using the 
recurrence relations (4). The method could im
mediately be generalized to the case where the 
energy operator depends on a larger number of 
coordinates. 

I express my gratitude to Professor I. N. 
Godnev for a useful discussion of the problems 
considered here. 
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