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We consider the flow of a liquid layer on a vertical wall under the influence of gravitation. 
The stability of the plane flow preceding wave flow is investigated in the first approximation. 

~YNOLDS' number, given by the equation 

Re = 4Qfr, (1) 

determines the way in which a thin layer of liquid 
will flow down a vertical wall under the influence 
of gravity. In Eq. (1), Q is the volume of liquid 
crossing unit width perpendicular to the flow per 
second and y is the kinematic viscosity. The 
flow is two dimensional. Up to Reynolds numbers 
of about 1500, the flow is laminar and such that the 
relation 

(2) 

holds, where a is the thickness of the layer and g 
is the acceleration due to gravity. Equation (2) is 
derived for flow parallel to the wall and has been 
verified experimentally, provided that a is taken 
to be the mean thickness of the layer. However, 
the instantaneous thickness can be greater. Sev­
eral investigators1 have confirmed the hypothesis 
that there are waves on the surface of such a layer. 
Waves can exist for Reynolds numbers ranging 
from 25 to 1500. 

P. L. Kapitza has done both theoretical1 and 
experimental2 work on the wave flow. He used an 
original method to find the least value of Re for 
which the wave flow was stable. His result agrees 
well with experimental data. 

The purpose of the present paper is to investi­
gate the stability of the parallel flow preceding the 
wave flow. This problem is different from that of 
P. L. Kapitza: the wave flow can appear at a 
Reynolds number different from that at which it 
disappears. 

THE METHOD OF SMALL PERTURBATIONS 

We proceed in the usual way by introducing 
small disturbances in the flow. Let x, y be coor­
dinates parallel to the wall (and along the flow ) 
and perpendicular to the wall (away from it) re­
spectively; let u and v be the corresponding 

velocities. In the undisturbed flow the speed is 
given by 

U = ~ ( ay - ~2 
) • 

Now let this flow be perturbed: 

U= U +w, v = O+v, p = p + Jt. 

(3) 

(4) 

The perturbed flow is described by the equation of 
continuity and the linearized Navier-Stokes equa­
tions. These are as follows, differentiation with 
respect to y being denoted by a prime: 

aw + U aw _L vU' = _ _.!._an + (azw + w") 
at ax I p ax r axz ' 

.E!!_ + u ~ = - _.!._ ' + (~ + ") at ax p Jt r axz v ' 

For periodic perturbations, 

w, v ~ exp [in (x- kt)] (6) 

the system of equations (5) becomes the Orr-Som­
merfeld equation. 3 

Let us formulate the boundary conditions. At 
the wall, 

y=O, V=O, v'= 0. (7) 

Let us assume that at the surface there is no in­
teraction with the gas and the tangential stress is 
zero: 

w' + av 1 ax= o. (8) 

The equation of continuity, together with (8), gives 
the first condition on the surface: 

y=a, 

The stress normal to the surface is balanced by 
the capillary pressure. This leads to a second 
condition: 

(9) 

y=a, (10) 

where TJ is the viscosity and a is the surface ten­
sion (the surface is assumed to be only slightly 
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curved). Upon substitution of 1r from (10) into the 
first equation of (5) followed by differentiation with 
respect to time, this last condition becomes 

y=a, "' + ( ink inga2 3 2) , i6n3 _ O (ll) v -1--~- n v -~v-. 

In Eq. (11), o is the kinematic surface tension. 
Without defining any new symbols, we introduce 

the dimensionless quantities 

1-yja--+y, na-+n, kafr-+k. (12) 

If, furthermore, we have 

R=ga3 j2y2 , S=oajy2 , (13) 

A= n (k- R), B = nR, C = n3S I k, (14) 

then the Orr-Sommerfeld equation, together with 
its boundary conditions, becomes 

+ in2By2 } v = 0, 

y = 1, v =0, v' =0, 

y=O, v"' + (iA - 3n2) v' + iCv = 0. 
(15) 

We seek a solution of (15) in the form 

v = 1Xo + IX1Y + IX2Y2 + 1XaY3 + IX4Y4 + 1XsY5 + . . . . (16) 

The series (16) can be cut off at the fifth power 
and the resulting fifth-order polynomial substi­
tuted into (15) and into the boundary conditions. 
The determinant of the resulting system of equa­
tions is then calculated and its real and imaginary 
parts set equal to zero, with the following result: 

n2A3 + NB + (720 + 480n2 + 18n4 -11 n6 ) A 

+ 2 (120 + 48n2 - n4) B- 4 (120 + 24n2 + n4) C = 0, 

(120 + 4n2 -lln4) A2 + 4 (10- n2) AB 

-8 (12 + n2) AC + 48 2 

-16BC-15(192+384n2 +64n4 -n8) =0. (17) 

The next step should be to substitute for A, B, and 
C, to express S in terms of R, and to eliminate 
k. Then the curve R ( n) would be the curve of 
equilibrium. However, this procedure is algebra­
ically difficult, so that it becomes necessary to 
find the equilibrium curve numerically. Our cal­
culations were carried out for water. 

From (13) and the experimental data quoted in 
reference, 2 we have 

S = .i. r 2_)' •;, R'1• = 3657 R'1•. 
r \ gr (18) 

Considering (14) as a system of equations for n, 
k, and R, that is, 

3657 n"!, = C (A+ B) B-'1., nk =A+ B, nR = B, (19) 

we assign arbitrary values to n. We choose a 
value of A to satisfy the first equation in (19) 
if B and C are obtained from (17). The other 
two equations determine k and R. From (1), (2), 
and (13) we find 

Re=fR. (20) 

The results are shown in the figure. Curve 1 cor­
responds to positive phase velocities, while curve 
2 corresponds to negative ones. The phase veloci­
ties and wave lengths can be calculated from (12), 
(13), and (20). 

Data applicable to the threshold of instability 
are shown in the table. It appears that the most 
"dangerous" perturbations are those traveling 
upward at 15.1 em/ sec. They break up the flow at 
a Reynolds number Re ~ 72, when wave conditions 
are produced. 

Re 
500 r-r---r--.------, 

Re 
n=2na/"A 

A, em 
k, em/sec 

k<O 

260 72 
0.3 0.4 
0.62 0.30 

27.7 -15.1 

22 
0.1 
0.89 

12.4 

At first glance it would appear that these con­
clusions contradict the data shown in the last 
column of the table, which are the results of P. L. 
Kapitza and have been verified experimentally .1• 2 

However, the comparison must be made carefully. 
According to the experiments, the lower bound for 
the stability of wave flow is Re = 22. To establish 
this, artificial regular perturbations were intro­
duced (photographs II, 6 -12 in reference 2 ). 
Without these, wave flow occurs at a higher Reyn­
olds number. The Reynolds numbers are easy to 
find from the data of photographs I, 1 - 2, and are 
46, 55, and 54 respectively. The photographs do 
not show the volume rates of flow; however, these 
were presumably close to critical since the photo­
graphs must have been made as soon as wave flow 
was observed. 

Wave flow appears and disappears at different 
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Reynolds numbers. Conditions for the existence 
of plane and wave flows are not mutually exclusive, 
but overlap partially. The process by which wave 
flow is established may be visualized as follows 
for the case when there are no artificial perturba­
tions. As the rate of flow increases no waves ap­
pear as Re = 22 is reached. At Re = 72, waves 
will run upward at 15.1 em/sec. As will appear 
shortly, these waves are not stable and will exist 
for only a short time. The plane flow will be dis­
turbed, so that waves running downward can ap­
pear and establish stable wave flow. Wave flow 
will persist as the flow rate is decreased to Re 
= 22, when plane flow is again established. 

The above considerations make it clear that 
there is no contradiction with the experimental 
data shown in the table. It would be desirable to 
measure the upper bound for stability of plane 
flow. 

It is usually believed that P. L. Kapitza has 
theoretically established the transition between 
plane anc} wave flow and found it to occur in water 
at a Reynolds number of 21.6. In what follows we 
compare Kapitza's method with the method of 
small perturbations. 

THE METHOD OF P. L. KAPITZA 

1. Before proceeding with the comparison, we 
present a brief exposition of Kapitza's work, 1 

using our notation. 
Assume that the distribution of longitudinal 

velocity is the same in wave flow as it is in plane 
flow. The average (over y) velocity, together 
with its square, is substituted into the Navier­
Stokes equation, without the third term on the left 
hand side: 

au 1 au2 1 ap 2 
at+2 ax= ---pax +g+rv u. (21) 

The pressure is assumed to be constant over the 
cross section of the flow, and equal to the capillary 
pressure at the surface. 

Taking the phase velocity in the profile of the 
liquid surface to be k, a constant, and writing the 
variable thickness of the layer in the form 

(22) 

P. L. Kapitza obtained the following equation in the 
second approximation: 

6a~~ (I + 3cp) + u~ (z - 1) (z - 1. 2) ( 1 - Sz ~ 6 cp) ~ + 3gcp2 

(23) 

In this equation, a subscript zero denotes the 
middle cross section, a short horizontal bar over 

a symbol means an average over y, and the ratio 
of the phase velocity to the mean velocity has been 
written as z, the ratio being taken at the middle 
cross section. 

The solution of (23) is 

cp =~sin nx + 0,28~2 cos 2nx- 4 g3~2 sin 2nx + ... (24) 
n uao 

subject to the following supplementary conditions: 

g(l + 3~2 12) = 3ruol a~. (25) 

(26) 

The amplitude a and the number z are deter­
mined from the equilibrium and energy-balance 
conditions. The fact that the average dissipated 
energy equals the work of the force of gravity 
leads to the relation 

). 

_ 1 \(1+z<p)2 _ 1 2 
F-T.) (1 + <p)" dx- 2 {2 + ~ [l- 6z 

0 

(27) 

As a function of the two variables z and a, the 
quantity F has a minimum at 

~ = 0.46, z = 2.4 

The mean potential energy associated with the 
surface tension is 

(28) 

Eo= t aa~~2n2 [1 + 4 (g~ I 4a06)2 n-6 + ... ] (29) 

and from this expression the critical value for Re 
can be found as follows: 

Imagine wave flow to be established. As long 
as the quantity in the brackets is small, the sur­
face energy will decrease with increasing A and 
decreasing n. However, for some critical value 
of A the part in brackets will become large and 
the energy will begin to grow. Such waves are 
presumably unstable and so the wave flow will 
disappear. Hence the condition 

aEal an= 0 (30) 

defines the limiting wave length beyond which wave 
flow is unstable. From (26), (27), (29), and (30) it 
follows that 

'A. I a0 = 13,5Q I r. Re = 2.43 (63 I gr4)'1n = 0.3 'A. I a0 , (31) 

For water this yields Re = 21.6. 
The above method, due to P. L. Kapitza, gives 

the lower boundary for stability of wave flow, 
while the method of small perturbations gives the 
upper boundary for stability of plane flow. The 
results obtained by use of these two methods are 
not contradictory. 
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2. Kapitza's results have been experimentally 
verified. However, the following comments can be 
made about the theory, as summarized above. 

First, the longitudinal velocity cannot be dis­
tributed parabolically in wave flow, for if it were, 
then the equation of continuity would imply a 
cubically-distributed transverse velocity. The 
Orr-Sommerfeld equation (15) would then be sat­
isfied by a cubic polynomial (16), which in fact is 
not the case. Unfortunately, it is difficult to see 
what this fundamental assumption could be re­
placed by. Furthermore, in the Navier-Stokes 
equation the quantities u and u2 should be the 
true velocities, not mean values. It is the whole 
equation that should be averaged over y. The 
third term on the left hand side of the Navier­
Stokes equation is of the same order of magnitude 
as the second term and so cannot be discarded 
(this follows from the equation of continuity). On 
the other hand, derivatives with respect to x can 
be neglected in comparison with derivatives taken 
with respect to y. Hence the equations to be con­
sidered are 

au au au 1 ap a•u i!!: + ~ - 0 
Fi + u ax + v ay = - P; ax + g + r ax• ' ax ay - . 

(32) 

To avoid a complicated analysis of both equa­
tions, we must take the pressure to be constant 
over the cross section. This is only an approxima­
tion, since without a transverse pressure gradient 
there can be no transverse velocity and hence no 
wave flow. 

It is difficult to find the minimum of the func­
tion F. It is easier to consider F as a function 
of one variable. From (25) we obtain 

cx.2 = 2 (3- z)lz. (33) 

From this it follows that waves with z < O, i.e., 
those traveling upward, are impossible. 

3. If the above comments are accepted, then 
Kapitza's method can be developed more rigor­
ously. From (32) we obtain in lieu of (23) 

36ao~~ + 6ao ~--+ z2ug!p~ + + (5z2 - 12z + 6) u~~ 

+ 3gqJ2 + 3 (g- zyu~ 1 a~) qJ + (g- 3ruo I a~)= 0. (34) 

Conditions (25) and (33) still hold. The solution 

• gC1.2 • 2 
!p = ex. Sill nx- 4n" <'lao Sill nx 

17z2 -36z+ 18 2 2 + 12(5z2 -12z+6J ex. cos nx+··· (35) 

leads to the following improved approximation to 
the wave number 

n2 = {-- (5z2 - 12z + 6) (u~ 1 t'la0). (36) 

Considering the integrand in (27) to be a func­
tion of qJ, we expand it in a power series and keep 
no terms higher than quadratic. Using (35) and 
(33) we find 

F = 1 + (3- z) (z2 - 6z + 6) I 3z, (37) 

and hence upon comparing (27) with the first equa­
tion of (25) we obtain 

F = zl3. 

From (37) and (38) we obtain 

(3- z) (z2 - 5z -r 6) = 0. 

One root of this equation corresponds to wave 
flow and leads, instead of (28), to 

Z=2, (X,= 0.58. 

The remaining two equal roots give plane flow 
( z = 3, a = 0 ). 

(38) 

(39) 

(40) 

It was not necessary to find the minimum of F 
because the stable solution had already been found 
in (35). However, the same result could be ob­
tained by finding the minimum of the function (37). 

For comparison with experiment, it is not dif­
ficult to find, from (25), (36) and (40), parameters 
such as wave length, phase velocity, maximal 
longitudinal velocity (the rate at which a dye 
would spread), mean thickness of the layer, am­
plitude, and the thickness of the plane flow which 
would give the same volume rate of flow. All these 
quantities, as functions of the volume rate of flow, 
differ but little from those obtained by Kapitza, so 
that they can be thought of as verified by experi­
ment. 2 The biggest discrepancy with experiment 
occurs for the amplitude; however, the authors 
themselves do not consider the experimental 
values for the amplitude to be a good test of the 
theory. 

The situation is quite different for the critical 
value of Re. Let us compute it using Kapitza's 
method. Substituting (40) into (35) we find 

!p = 0.58(sinnx-0.145 -J- sin2nx n ua0 

+ 0.338 cos 2nx + · · · ). (41) 

From (41), the mean surface energy can be cal­
culated, as follows: 

(42) 

so that, computing the derivative (30), we obtain 

(43) 

From (36), (27) and (38) it follows that 
tj I lf, 

n2 = 0.2gQ I y6, A.= 14.1 (y6 I gQ) •, 1 ao = 1.26 (rQ I g) '. 
(44) 
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Substituting these into (43), instead of (31), it 
turns out that 

Re= 1.08')..,ja0 =7.32(b3 jgy4)'1". (45) 

For water, the data of reference 2 give 

Re = 64. (46) 

It thus appears that Kapitza's value of the lower 
limit of stable wave flow disagrees with experiment. 
This is not surprising in view of the comments 
made above. 

CONCLUSION 

The methods described above, together with the 
results obtained by their use, are first attempts to 
understand a new, important, problem in hydrody­
namic stability. Both methods could be developed 
further, though this would be accompanied by great 

computational difficulties. The method of small 
perturbations could be improved by taking more 
terms in the series (16), or by solving the Orr­
Sommerfeld equation differently. It would be in­
teresting to apply Kapitza's method to the complete 
system of hydrodynamic equations for this problem. 

The author would like to thank V. S. Sorokin for 
suggesting this problem and S. P. Kapitza for use­
ful discussions. 
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