ON MUTUAL FRICTION IN HELIUM II

Yu. G. MAMALADZE

Institute for Physics, Academy of Sciences, Georgian S. S. R.

Submitted to JETP editor April 25, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 859-860 (September, 1960)

A possible method is indicated for deciding experimentally the question of the existence of a component parallel to the axis of rotation in the mutual friction force between the superfluid and normal components of rotating helium II.

THE mutual friction force acting on a unit mass of the superfluid component from the direction of the normal component in rotating helium II has been examined in a number of papers.¹⁻³ The force:

$$\mathbf{F}_{sn} = -\frac{\rho_n}{2\rho} B' \, \boldsymbol{\omega} \times [\mathbf{v}_n - \mathbf{v}_s] - \frac{\rho_n}{2\rho} B \Big[\frac{\omega}{\omega} [\boldsymbol{\omega} \times [\mathbf{v}_n - \mathbf{v}_s]] \Big], \quad (1)$$

where $\boldsymbol{\omega} = \operatorname{curl} \mathbf{v}_{\mathbf{S}}$ and B and B' are the coefficients of mutual friction of Hall and Vinen. Both terms in (1) are perpendicular to ω .

The purpose of this note is to indicate the possibility of an experimental resolution of the question of the existence of a third term in the mutual friction force, parallel to ω , i.e., of the existence of an additional term in \mathbf{F}_{sn} of the form

$$\frac{\varphi_n}{2\rho}B'' \frac{\omega}{\omega} \left[\omega \times (\mathbf{v}_n - \mathbf{v}_s) \right]. \tag{2}$$

The coefficient B" can be determined from the damping of the oscillations of a cylinder along its axis (coincident with the axis of rotation of the fluid).* The hydrodynamic equations for rotating helium II are solved⁴ with the following boundary conditions, in order to derive the corresponding equations:

$$v_{nr}(R) = 0, \quad v_{n\varphi}(R) = \omega_0 R, \quad v_{nz}(R) = i\Omega z_0 \exp(i\Omega t),$$
 (3)

where R is the radius of the cylinder, ω_0 the angular velocity of rotation, Ω the frequency of the oscillations and z_0 their amplitude.

This leads to the following expression for the force acting on the surface of unit length of an infinite hollow thin-walled cylinder, oscillating in a boundless liquid:

$$F_{z} = i2\pi R \eta_{n} \Omega \varkappa \left[\frac{H_{1}^{(1)}(\varkappa R)}{H_{0}^{(1)}(\varkappa R)} - \frac{J_{1}(\varkappa R)}{J_{0}(\varkappa R)} \right] z_{0} \exp(i\Omega t), \quad (4)$$

where

$$\kappa^{2} = -\frac{i\Omega}{v_{n}} \left[1 + \left(\frac{\omega_{0}}{\Omega}\right)^{2} \frac{\rho_{n} \rho_{s} B'' / \rho^{2}}{1 + \left(\omega_{0} / \Omega\right)^{2} \left(\rho_{n} B'' / \rho\right)^{2}} - i \frac{\omega_{0}}{\Omega} \frac{\rho_{s} B'' / \rho}{1 + \left(\omega_{0} / \Omega\right)^{2} \left(\rho_{n} B'' / \rho\right)^{2}} \right]$$

$$(\operatorname{Im}(\kappa) > 0).$$
(5)

Here η_n and ν_n are the dynamic and kinematic viscosities of the normal component, and H and J are the Hankel and Bessel functions.

Equation (5) leads to a penetration depth 1/ Im (κ) ~ $\sqrt{2\nu_n/\Omega}$. For R ~ 1 cm, the quantity κR can therefore be considered large, and taking the asymptotic expansions of the Bessel functions we easily obtain the following equation:

$$\frac{\gamma_2 - \gamma_1}{l_2 - l_1} = \frac{\pi R \sqrt{2\eta_n \rho \Omega}}{m} \left(1 + \frac{\omega_0}{2\Omega} \frac{\rho_s}{\rho} B'' \right), \qquad (6)$$

which is valid for

$$(\omega_0 \rho_n B'' / \Omega \rho)^2 \ll 1, \qquad (\omega_0 / \Omega)^2 \rho_n \rho_s B''^2 / \rho^2 \ll 1,$$
$$R / \operatorname{Im}(\varkappa) \gg 1.$$

Here γ_2 and γ_1 are the damping coefficients for the cylinder immersed to the depths l_2 and l_1 : m is the mass of the oscillating system. Edge effects are automatically removed by subtracting γ_1 from γ_2 . It is assumed that the oscillating system is "heavy" ($\Omega_2 = \Omega_1 = \Omega$).

It is convenient to use the following equation for determining B":

$$\left(\Upsilon_{2}-\Upsilon_{1}\right)/\left(\Upsilon_{2}-\Upsilon_{1}\right)_{\omega_{a}=0}=1+\left(\omega_{0}\rho_{s}/2\Omega\rho\right)B''.$$
 (7)

If B'' = 0, the damping is independent of the speed of rotation. If this is not the case we shall find a linear increase in damping with increasing ω_{0} .

The author is grateful to É. L. Andronikashvili, S. G. Matinyan, and D. S. Tsakadze for discussions.

^{*}According to I. L. Bekarevich and I. M. Khalatnikov (private communication) an additional term should also be introduced into the force F_{sn} containing the product of ω and curl (ω/ω) . Actually, in the case considered of the oscillations of a cylinder along the vortex lines, $\operatorname{curl}(\omega/\omega) = 0$.

¹H. E. Hall and W. F. Vinen, Proc. Roy. Soc. A238, 204, 215 (1956).

² E. M. Lifshitz and L. P. Pitaevskiĭ, JETP 33, 535 (1957), Soviet Phys. JETP 6, 418 (1958).

³L. P. Pitaevskii, Thesis, Institute for Physics Problems, U.S.S.R. Academy of Sciences (1958). ⁴Yu. G. Mamaladze and S. G. Matinyan, JETP 38, 184 (1960), Soviet Phys. JETP 11, 134 (1960). Translated by R. Berman 154