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The lateral distribution of high-energy nuclear-active particles in the core of extensive 
atmospheric showers is considered. The mean-square radius for nuclear-active particles 
with energies ~ 5 x 1011 ev is computed from the angular distribution of secondary particles 
emitted in multiple-production processes, as predicted by the Landau hydrodynamic theory. 
It is shown that the mean-square radius depends not only on the angles of emission of the 
secondary particles during multiple production but also on the diffraction scattering of the 
nuclear-active particles by nuclei of air atoms. 

1. There are many known experimental papers 
devoted to the lateral characteristics of the 
nuclear-active component of extensive atmospheric 
showers ( EAS ) of cosmic rays .1 •2 One of the 
tasks of these investigations is to study the 
angular distribution of the secondary particles 
produced when high-energy nuclear-active parti­
cles collide with the nuclei of air atoms. For this 
purpose, the form of the lateral-distribution func­
tion of the flux density of the nuclear-active parti­
cles of energy higher than specified is determined 
in different experiments. Since the nuclear-active 
cascade is accompanied by a large number of elec­
trons produced by the 1r0 mesons which are 
created in the same interaction events as the 1r± 

mesons and the nucleons, one might think that an 
investigation of the lateral characteristics of the 
electron-photon component would explain several 
detailed features of the elementary act. However, 
it has been shown by many authors ( see, for 
example, reference 3 ) that the lateral distribution 
of the electron-photon component is practically 
independent of the lateral and angular distributions 
of the ~ mesons. It follows therefore that the 
lateral distribution of the ~ mesons is very 
narrow, and consequently a study of the lateral 
characteristics of the electron-photon component 
(except perhaps at very short distances from 
the axis ) does not make it possible to evaluate the 
angular distribution of the secondary nuclear-active 
particles in the elementary act. 

The situation is different with 1r± and nucleons, 
the lateral distributions of which (in the case of 
high energies) are determined by the angular dis-

tribution of the particles during the acts of multi­
ple generation and by elastic scattering on the nu­
clei of the air atoms (diffraction scattering). 

2. Let us consider the passage of high-energy 
nuclear-active particles through the atmosphere. 
Let P ( E, t, r, 8) be the flux density of the nuclear­
active particles of the EAS. Here E is the energy 
of the nuclear-active particles, t the height of ob­
servation in nuclear-interaction ranges, r the 
radius vector in a plane perpendicular to the 
shower axis, and 8 the vector of direction of mo­
tion of the particle. The function P satisfies the 
following kinetic equation:4 

aP(E, t, r, 6)/at + 6aP(E, t, r, 6)/ar = -P(E, t, r, 6) 
00 

+ ~ ~ P(E', t, r, 6 + X)q>L (E', E, 6 +X· 6)dE'dQ 
BQ 

+~[P(E, t, r, 6+x)-P(E, t, r, 6)]da(x). (1) 
Cl 

where <PL ( E', E, 8 + x, 8) is the probability that 
a particle of energy E', traveling at an angle 8 
+ X to the shower axis, will have an energy E 
after colliding with the nucleus of the air atom, 
and wili be .deflected by an angle x; du(x) is the 
cross section for the deflection of a nuclear-active 
particle by an angle x as a result of diffraction 
scattering.* 

We shall consider nuclear-active particles of 
very high energies ( E » Mc2 ), and can therefore 
put 8 « 1 and x « 1. 

For the function <PL· which characterizes the 
multiple particle production processes, we use an 

*We neglect the diffraction-generation effect. 
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expression that follows from the hydrodynamic 
theory of interaction of particles of very high ener­
gies, 5 with allowance for the fact that the distribu­
tion of the secondary particles along the direction 
(} + X has azimuthal symmetry: 

({>L (£', E, 6 + X• 6)dE' dQ 

2 exp {- (1'] -1']~) 2/2L} dE'dQ ' p c) =-N £•-----====-"------- 6(x - _l_E , ' 
3 V 2nL 2np .L c 

E 
'I'] =In Mc2 , L=0.5'1']', NE·=2.3e~·;~, 

'11, ~ _! [ '~"~' _ In no+ 1 J 
' 1c~ 2 ' 1 2 ', 

no is the average number of nucleons in a "tunnel" 
of the air-atom nucleus, and P.L is the momentum 
acquired by a secondary particle in the direction 
perpendicular to the direction of motion of the pri­
mary particle. According to Milekhin, 5 P.L R~ 3p.c,* 
where p. is the pion mass. The function 'PL is 
normalized to the total number of particles pro­
duced by a primary particle of energy E'. 

It must be especially emphasized that we 
assume that the 71' mesons and the nucleons inter­
act in the same manner with the nuclei of the air 
atoms. It is possible that account should be taken 
of the difference between 71' -mesons interactions 
and nucleon interactions. This would lead to a sys­
tem of kinetic equations which are genetically re­
lated, but such an analysis is not believed desirable 
in the present paper. 

In addition to scattering that takes place during 
the nuclear-interaction events accompanied by 
multiple particle production, one must allow also 
for the so-called diffraction scattering, which 
occurs without loss of primary-particle energy, 
since it is found that the effective angles are of 
the same order of magnitude in diffraction scat­
tering as in multiple-production events. The total 
cross section of diffraction scattering adif is 
equal to the multiple-production cross section 
amp: 

where A is the atomic weight of air and R R~ 1.3 
x 10-13 em. 

The cross section adif which we use for dif­
fraction scattering contains one natural assump­
tion, namely that the nucleus is a non-transparent 
"black ball" for fast nuclear-active particles. 6 

To simplify the kinetic equation (1), we use the 
condition X R~ 1 and expand the function P ( E, t, r, 
8 + X) in powers of x: 7 

*By P.1. is meant the mean-squared value of the transverse 
momentum. 

iJP 
P (6 +X) = P (6)+ ae X 

1 ( iJ2p i)2p i)2p ) 
+ 2 ae2 X~ + a92' X! + ae ae XxXu + · · · 

X y X y 

(2) 

Here Xx and Xy are the components of the vector 
x in a plane tangent to the unit sphere at the point 
(}; 

Xx= X cos q>, Xu= X sin q> • 

Let us average Eq. (2) over cp with allowance 
for the azimuthal symmetry 

211: 27t 

~ P (6 + X) dq> = ~ P (B) dq> + y x2~oP + ... , (3) 
0 0 

where, in view of the smallness of x. we discard 
terms with higher powers of X· 

We substitute (3) in the right half of (1). The 
integral that determines the multiple-production 
processes assumes the form 
00 

~ ~ P (E', t, r, 6 +X) q>L (E', E, 6 +X· 6) dE'dQ 
E!l 

= L [P (£', t, r, 6)] + (p_l_c/2£)2 deL [P (E', t, r, 6)], 
00 

L [P (E', t, r, 6)] = ~ P (E', t, r, 6) q>L (E', E, 6 +X· 6)dE'. 
E (4} 

The integral that describes the diffraction scatter­
ing is transformed into 
"2>t 

~ ~ [P(E, t, r, 6 + x)- P (E, t, r, 6)]/(x) sin xdxdq> 
0 0 

Xm 

=i deP(E, t, r, 6) ~ f(x)x3 dx. (5} 
0 

Here f (X} is determined from the expression for 
the diffraction-scattering cross section da (X) 
= f (X} dx, and Xm is the maximum angle of de­
flection, taking account of the transparency of the 
edge of the nucleus to nuclear-active particles. 
We note that the expression for f (X), which fol­
lows from the "black ball" model, 6 

f(x) = ~ [ J1 ( 11: 2 sin x)/sinx j, 
leads to a divergent expression for the mean­
squared deflection angle x2• Taking into account 
the fact that we know the structure of the edge of 
the nucleus, we introduce_!he mean-squared angle 
of diffraction scattering x2 = (h,.tc2/E )2, and then 
(5) is transformed to 

The parameter b should be determined experi­
mentally, for example, from emulsion data. We 
thus write finally expression (4) in the form 

(6) 
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iJP (E, t, r, 6) + 6 iJP (E, t, r, 6) p (E t 6) 
at or =- ' • r, 

(bi!C~ )2 + 2E !'laP (E, t, r, 6) 

[ ( p.lc)2 J , + 1+2£ l'laL[P(E,t,r, 6)]. (7) 

3. Let us now determine the mean-squared 
angle and the radius of deflection of the nuclear­
active particles. Following the usual procedure of 
calculating the moments of the function P ( E, t, r, 
8) ,7 we integrate (7) with respect to t from 0 to oo 

and then multiply by e2 and integrate over all of 
space and all the solid angles. As a result we 
obtain 

PI (E)- L [PI (E')] = ( bf;t)2 P0 (E)+ (p f )2 L [P0 (E')], 
. (~ 

00 

P0 (E) = ~ ~~ P(E, t, r, 6)dtdrd6, 
o r Q 

00 

PI(E)=~ ~~ P(E,t,r,6)62 dtdrd6. (8') 
o r Q 

After substituting (11) in (8) we obtain 

PI (E)_ L [PI (E')] = (b~tr :. 
00 

+CfY ~ :,2 cpL(E', E)dE'. 
E 

(12) 

The solution of Eqs. (12), (9) and (10), carried out 
by the method of successive approximations, has 
made it possible to.....Qbtain the following expres­
sions* for e2 and r 2: 

82 = 1.1 (!1C2 I E)2 [b2 + 0. 7 (p j_ I !1C)2], (13) 

i2 = 3.0 (1:1c2 1 E)2 [b2 + 0.7 (p .l 1 1:1c)2]. (14) 

For a comparison with the experimental data, 
it is necessary to obtain an expression for the 
mean-squared radius of particles of energy greater 
than specified, r 2 (~E), since this quantity can be 
estimated experimentally. 

By definition 

00 I 00 f2 C> E) = ~ P3 (E') dE' ~ P0 (E') dE'. 
E E 

(15) 

Hence 

jj2 = PI (E) I P0 (E). 

Substituting in (15) the values of P3 (E) and P 0 (E), 
( 8") we obtain 

Next, multiplying (7) by 8 • r and carrying out the 
same integrations, we obtain 

p2 (E)- L [P2 (E')] =PI (E), (9) 
00 

P2 (E)=~ ~~ P(E, t, r, 6)(6r)dtdrd6; (9') 
o r Q 

and finally, multiplying (7) by r 2 and integrating 
over all space and all the solid angles, we get 

P3 (E)- L IPa (E')l = 2P2 (E), (10) 
00 

P3 (E) = ~ ~~ P(E, t, r, 6)r2 dtdrd6. (10') 
o r Q 

The mean square of the deviations r 2 is given by 

(1 0'') 

Thus, the problem of determining 02 and r 2 

reduces to a successive solution of very compli­
cated integral equations (8), (9), and (10). These 
equations can be solved if we know the function 
P0 (E) dE, i.e., if we know the differential energy 
spectrum of the nuclear-active particles in the 
EAS. For this function we can use the expression 

A= const, (11) 

which follows both from an examination of the alti­
tude variation of the EAS under a variety of assump­
tions regarding the character of the elementary 
act, 8 and from experimental data. 2 ' 10 

(16) 

We must qualify that the expressions obtained for 
e2, r 2, and r 2 (~E) are valid at very high ener­
gies ( E ~ 5 x 1011 ev ), since we did not take into 
account the spontaneous decay of the pions. 

To compare the value obtained for r 2 (~E) 
with the experimental data, it is necessary to know 
the value of the diffraction parameter b. The 
value of b cannot be determined theoretically 
since the structure of the nucleon is unknown, and 
consequently we do not know the character of the 
"transparency" of the edge of the nucleus to fast 
pions. It is sensible to assume, however, that b 
:::::; 3 (this corresponds to a smearing of the nuclear 
edge ,..,ti/Mc, where M is the nucleon mass). In 
this case (? ( ~10 12 ev) ]112 :::::; 0.6 m for an alti­
tude of 3,860 m above sea level (Pamir). We as­
sume here that P.L :::::; 3p.c, if we are to follow the 
hydrodynamic theory of multiple production. 5 This 
corresponds to a hydrodynamic system decay tem­
perature Tk:::::; p.c2 (the transverse momentum ac­
quired by the particles through expansion of the 
hydrodynamic system at primary-particle ener­
gies ,.., 1013 ev is much less than the transverse 
momentum obtained in thermal motion9). 

From the results obtained in the investigation 
of the energy characteristics of the nuclear-active 

*The computational accuracy of (13) and (14) is not lower 
than 10%. 
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component in thEl_J'egion of the core of the EAS, 10 

it follows that [ r 2 ( ~ 1012 ev) ]1/2 ~ 1m. Thus, the 
experimental and theoretical values of the mean­
squared radius are quite close to each other, al­
though the experimental value is somewhat higher. 
There is little likelihood of attributing this differ­
ence to an underestimate of b (when b ~ 6 we 
have r~xp ~ ~he or). It is natural to assume that 
the transverse momentum P.L. acquired by the sec­
ondary particles during multiple production, is in 
fact higher for the faster particles than follows 
from the hydrodynamic theory, although p ~ 3p.c 
for the overwhelming majority of the secondary 
particles (this is confirmed by emulsion data 11 ) 

In addition, the fastest particle can be a nucleon1'! 

with a transverse momentum considerably greater 
than 3p.c. 

4. We see from the formula for ? that for 
particles of energy ~ 5 x 1011 ev, r enters into the 
lateral distribution function of the nuclear-active 
particles only in the combination rE. Since parti­
cles of such energies are observed only near the 
axis of the shower, we can use the Pomeranchuk­
Migdal method13 •14 to calculate the lateral distribu­
tion function of the flux density of the nuclear­
active particles. We seek a distribution function 
in the form 

P(E, r, t)=P(E, t)F(rEjkEr~.), (17) 

where P ( E, t) is the total number of nuclear­
active particles with energies in the interval E, E 
+ dE, at a depth t; Ea determines the value of 
( r 2 )112, and k = const. The normalizing factor A 
is determined from the condition 

00 

2nA ~ F (rEI kEr~.) rdr = I, 
0 

hence 

A= £2 I 2n (kE.) 2 • (18) 

For the flux density of nuclear-active particles 
with energy ::: E we have 

E, 

p (E, r, t) =:= 2n {;£"-)2 ~ P (E', r, t)E'2F (;iJ dE'. (19) 
E 

To determine the functions P ( E, t) dE we make 
use of the analytic expression derived by Fukuda, 
Ogita, and Ueda, 3 

P (E t') dE = {i- 6)" 
' [4n V(1- 6) vt'y)'/, 

x exp {- t' +by+ 2 [(l - 6) vt'yj'i'} dy, (20) 

where y = ln ( E0/E ), t' is the depth in units of 

range of nuclear interaction from the point of 
shower production to the observation level, v is 
the ratio of charged nuclear-active particles to 
the total number of particles produced during the 
multiple-generation act, and o is the fraction of 
the energy retained by the nucleus after each in­
teraction; the values of v and o were chosen by 
comparing the altitude variation with experiment: 
v ~ %. o ~ Y2• The function F ( rE/kEa) was 
chosen to be 

F (rEI kEr~.) = e-rE/kE•. 

Then k = 1/ ..f6 [this follows from the condition 
r2 = ( Ea /E )2, and for r ;;>, ..fr2 the choice of the 
specific form of the function F is immaterial] . 

To compare the experimental data with the cal­
culated lateral distribution, account must be taken 

' of the fluctuations in the depth of the onset of the 
shower, namely, that showers with a total of N parti­
cles at the observation level can be produced by 
primary nuclear-active particles of different ener­
gies, interacting at different altitudes from the ob­
servation level. In calculating p ( E, r, t) we used 
the dependence of the total number of particles N 
= t ( E0, t' ), which follows from calculations of the 
altitude variation of the EAS under the assumption 
that the hydrodynamic theory of multiple produc­
tion is valid. 9 In this case the range for the inter­
action of nuclear-active particles with nuclei of air 
atoms was assumed to be 75 g/cm2• 

Figure 1 shows a comparison of the experimen­
tally-obtained and theoretically-calculated lateral 
distributions for particles with energy ~ 5 x 1011 

ev, for the case Ea ~ 1.5 x 109 ev (corresponding 
to b ~ 6 and P.L ~ 3p.c). 

It must be noted that the total number of nuclear­
active particles with energy ::: 5 x 1011 ev in a 
shower with a large number of particles, N = 105, 

obtained by integrating expression (20) with re­
spect to the energy for the Pamir altitude, is about 
one-fourth the experimentally obtained value. The 
theoretically-calculated lateral distribution was 
therefore normalized to the experimental value 
relative to the total number of nuclear-active 
particles of energy :::5 x 10 11 ev. 

Let us consider now the dependence p ( E, r, t) 
for fixed values of r and t, i.e., let us determine 
the energy spectra of the nuclear-active particles 
at different distances from the shower axis. The 
results of the calculation are shown by the solid 
lines of Fig. 2, which shows also the experimental 
values of p ( ::: E ) taken from the paper of 
Dovzhenko, Zatsepin et al. 10 The calculation was 
carried out for E ~ 1.5 x 109 ev. 

In conclusion, the authors consider it their 
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FIG. 1. Lateral distribution of nuclear-active particles 
with energy;;;;. 5 x 1011ev. The experimental points were bor­
rowed from reference 10, and the solid curve Pn.a. (r) is calcu­
lated by formulas (19) - (21). 

FIG. 2. Energy spectra of nuclear-active particles for dis­
tances r from the shower axis ranging from zero to one meter 
(o) and from one to two meters (b.) for a shower with a total 
number N = 105 particles.10 
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