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A perturbation theory is developed and an expression is given for the amplitude (correspond
ing to a given initial state) of a state that decays exponentially with time. A final expression 
is obtained which plays the role of the norm of such a state. 

AN exponentially decaying state that describes, 
for example, the phenomenon of a decay, is char
acterized by a complex value of the energy, the 
imaginary part of the energy giving the decay prob
ability. The wave function of this state increases 
exponentially in absolute value at large distances, 
and therefore the usual methods of normalization, 
of perturbation theory, and of expansion in terms 
of eigenfunctions do not apply to this state. We de
velop here a perturbation theory which gives an 
expression in terms of a quadrature for the 
changes of the mean energy and of the decay prob
ability corresponding to an arbitrarily small 
change of the potential. 

If the state is initially described by a certain 
wave function, then for a long time interval there
after the wave function is close to an exponentially 
decaying function with a definite amplitude. This 
amplitude is also calculated in terms of quadra
tures. 

The solutions of both problems-that of the en
ergy and that of the amplitude of the exponentially 
decaying state-involve a quantity that plays the 
role of the norm of this state: 

co 

lim~ ')( 2 exp (- 1Xr2) r 2dr. 
a:-+0 0 

For the calculation of this quantity we shall give a 
direct method which enables us to avoid the limit
ing process a - 0. 

1. Let us consider a particle moving in a spher
ical potential with a barrier, i.e., moving like the 
a particle in the Gamow theory of a decay. 

Let the corresponding Schrodinger equation have 
the formal solution 

'¢ (r, t) = e-iE'tx (r) 

with the complex value E' = E0 - iy. The discrete 
value E' is obtained from the condition that at 
large distances x(r) contains only an outgoing 
wave: 

k = + V2E', 1i = m = 1. 

This solution is of interest not only as a descrip
tion of an unstable state; the corresponding eigen
value is a singular point-a pole-(in the complex 
plane) of the matrix for the scattering of a parti
cle by the potential. 

As is well known, I x(r) I increases exponentially 
for r - oo ; the function x cannot be normalized, 
and in particular cannot be regarded as a wave 
function in the usual sense: it does not belong to 
the complete system of eigenfunctions 1/Jn of the 
Hamiltonian operator. We cannot apply to x the 
usual formulas of perturbation theory, for example 

and the expansion of the function of an arbitrary 
state in terms of eigenfunctions: 

We shall find the expressions that replace these 
well known formulas in the case of the function X· 

Let us begin with the perturbation theory. In the 
simplest case of an S wave and a potential such 
that V(r) = 0 for r > R, by using the methods de
veloped in references 1 and 2 we get without dif
ficulty the expression 

M' = ~ ·r (r) W (r) do:/ Etx2 (r) 

(1) 

where C is the coefficient in the asymptotic for
mula for the unperturbed solution X: x(r) ~ cr-1 eikr 
as r-oo. The two integrals-in the numerator and 
in the denominator-can be thought of as taken over 
all space: in the numerator the region of integra
tion is fixed by the region of the perturbation oV(r), 

542 



ON THE THEORY OF UNSTABLE STATES 543 

and in the denominator the integrand is zero for 
r > R. 

We note that the integrands do not contain the 
square of the absolute value, but the complex quan
tity x2, and therefore oE' is complex. The expres
sion (1) gives not only the change of the energy E0, 

•but also the change of the decay probability w = 2y. 
To derive Eq. (1) we introduce the variable 

r 

y = d lnx/ dr; x(r) =exp{~ y(q)dq }· (2) 
0 

Schrodinger's equation then takes the form 

dy jdr =- y2- 2 [£'- V (r)], (3) 

and the equation for the perturbation of y is 

day Jdr = -2y6y + 2 [6£'- W (r)]. (4) 

The condition of regularity of x at r = 0 
uniquely determines y(O), so that oy(O) = 0, and 
from this we have 

r r q 

6y (r) = exp {-2 ~ ydr} ~ [W (q)- 6£'] exp {2 ~ ydq} dq 
0 0 

r 

= x•~r) ~ [W (q)- 6£'] X2 (q) dq. 
0 

(5) 

The boundary condition for the perturbed prob
lem for r > R is 

dIn x'Jdr =y + 6y = i V2 (E' + 6£') 

=, iV2E; + i6E'/2E'. 

oy = i6E'JV2E' = i6E:Jk. (6) 

Comparing Eqs. (6) and {5), we now get Eq. (1) by 
an elementary calculation. 

If we prescribe oV = e: = const in the entire in
finite volume, we must obviously get oE' = e:; 
Therefore the finite expression in the denominator 
of Eq. (1) can be regarded as the definition of the 
diverging integral j x2dr. This latter integral does 
have any unambiguous meaning beca11se of the fact 
that 

I X I~ exp (rr/V2£0)-+ oo for r-+ oo 

and does not become convergent if we multiply the 
integrand by e-ar and subsequently take the limit 
a - 0. Convergence can be achieved by multipli
cation by e-ar2 : 

(1a) 

2. Let us now consider the nonstationary prob
lem. Suppose that at the initial time the wave func-
tion 

'¢(r, t = 0) = cp(r). 

is prescribed. It is well known that the asymptotic 
form of the solution is 

'ljJ (r, t) = Ae-iE't x (r) + 0 (r, t), (8) 

where 0 (r, t) falls off like C 3/2 for small r [for 
further details about O(r, t) see the paper of 
Khalfin3]. 

Despite the fact that the first term decreases 
exponentially as e-yt and the second only by a 
power law, the separation of the first term is jus
tified over a wide range of values of t for 'Y « E0• 

Drukarev4 has shown that the approach of 1/J(r, t) 
to the asymptotic expression (8) occurs nonuni
formly at small r (r < vt, where v is the speed of 
the particle corresponding to the energy E0). As 
has been shown by Fok and Kry lov, 5 the coefficient 
A in the first term of Eq. (8) is proportional to the 
residue (at the pole E = E ') of the spectral density 
of the initial state <P(r) when it is expanded in 
terms of the continuous-spectrum eigenfunctions 
1/J(E, r) that correspond to real values of E. 

The coefficient A can be expressed in terms of 
<P(r) and x(r) by a simple quadrature: 

(9) 

where j x2dT is defined by Eq. (7). 
To verify this we introduce, following N. A. 

Dmitriev, a function 1/J(r, s) defined by the formula 
00 

'ljJ(r, s)= -i~ 'ljJ(r, t)ei•tdt, (10) 
0 

for those values of s for which the integral con
verges. In the region where the integral diverges, 
we define 1/J(r, s) as the analytic continuation of the 
function defined by the integral (10). 

The Schrodinger equation gives 

- s\1:1 (r, s)-+ ~'¢ (r, s) + V (r) 'ljJ(r, s) =- cp(r). (11) 

In the region r > R, where V(r) = 0 and <P(r) = 0, 
the solution is of the form 

'ljJ (r, s) = [f (s) exp (ir V2s) + f1 (s) exp (ir V2s)] ,-1, {12) 

where f and f1 are arbitrary functions. ~ x2 d-c= ~i~ ~ x2e-ar• d't = J 

= ~ [X2 - (Cr-1eikr)2 ) d't- C2J2ik. 

Equation (1) can then be written in the form 

Considering the region 1m s > 0, where 1/J(r, s) 
(7) is given by a convergent integral, we convince our

selves that f1(r, s) = 0, since 11/J(r, s)l cannot in
crease for r-oo. The condition that 1/J(r, s) is a 
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diverging wave for large r is extended by the an
alytic continuation to arbitrary values of s. 

The function x(r) that describes the decaying 
state satisfies the same condition for r- co and an 
equation analogous to Eq. (11) but without the right 
member: 

- E'x, (r)-+ 1'1x, (r) +- V (r) 'X (r) = 0 (13) 

It follows from this that the solution of the equa
tion (11) with the right member has a pole at 
s = E' (with Im s = -y < 0) : 

'1\J (r, s) =ax, (r) I (s- £') +- \jl1 (r, s), (14) 

where l/!1(r, E') is regular. 
To determine a we multiply Eq. (11) by x(r) 

and Eq. (13) by 1/J(r, s) and subtract one equation 
from the other. We then integrate over the volume 
0 < r < R and substitute the expression for 1/J(r, s) 
in the form (14). Then finally for s- E' we get 
an expression for a that coincides with the expres
sion (9) for A. 

Inverting the relation (1), we find that the pole 
term in Eq. (14) gives the exponential term in Eq. 
(8) with A= a, and this completes the derivation of 
(9). 

3. The formulas are easily extended to the case 
of states with l ro 0. In this case all formulas con
tain instead of x2 the product x(r)x*(r), where X(r) 
is the solution of the adjoint equation (cf. reference 
6). In the present case, since the operator H is 
Hermitian, the taking of the adjoint reduces to 
changing the sign of i irt the boundary condition 

a In rx,lar = +- i V2E', a In (x;ar =- i V2E'* 

(r--"" oo ). 

After separating off the angular factor in x(r) 
=P(e, cp)z(r), we get 

x=Pz, z = z*, 

so that finally 

bE' = ~ r: x,6 v d-r: I~ x*x d-r:, (15) 

'1\J (r, t) = Ae-iE't 'X (r) +- 0 (r, t), (16) 

A=~ x* (r) <p (r) d-r: j ~ %* (r) 'X (r) d-r:. (17) 

In the equation for the radial function z(r) the 
effective potential U(r) includes the centrifugal po
tential: 

U (r) = V (r) +- ,-2 / (f +- 1 ), 

and therefore in the region r > R, where V(r) = 0, 
the function z(r) can be expressed in terms of a 
Hankel function of half-integral order of the com-

plex argument kr (k is complex when E' is com
plex). 

For r- co we also have lx 1- co, and therefore 
to give a definite meaning to the integral that plays 
the role of the normalization we must again either 
multiply the integrand by e-0' r 2 and then let a - 0 
or else use a finite expression of the type of (1), 
which does not require the passage to the limit: 

oo r 

~ z2r 2dr = \ z2r 2dr +- r2z2 ~ In (rz) ) ~ iJE' iJr • (18) 
0 0 

For r > R we get intothe region where z(r) 
can be expressed in terms of a Hankel function, 
and the derivatives in the second term can be taken 
in an elementary way. Furthermore, it is easily 
verified that in virtue of the equation satisfied by 
z(r) the right member of (18) does not depend on 
r. The problem is solved in a similar way for the 
Coulomb potential. the only difference being that 
for r > R the quantity z is expressed by a hyper
geometric function. 

Finally, in the case of a V(r) that contains, be
sides the Coulomb and centrifugal potentials, an
other part that is everywhere different from zero 
but that decreases sufficiently rapidly (exponen
tially), we must bring into the treatment, along with 
the solution z(r) of the complete equation, another 
function z1(r) that is a solution of the equation with 
V(r) = 0 and coincides with z(r) in the limit r - co 

[z(oo) = z 1(oo)]. The function z1 can be expressed in 
terms of known (Hankel and hypergeometric) func
tions: 

00 p 00 

~ z2r 2dr = .~ z2r 2dr +- ~ (z2 - z;) r 2dr 
0 0 0 

(19) 

For l ro 0 we must treat separately a neighbor
hood of the origin, 0 < r < p, because of the fact 
that the Hankel function has a nonintegrable singu
larity at zero. It is assumed that after we have 
separated out from V(r) the terms of orders 1/r 
and 1/r2, V(r) falls off in such a way that z2 - z12 

is a function that is integrable for r - co • 

In the case of a potential of complicated form, 
for which the integrals can only be calculated nu
merically, the advantage of the expression (19) as 
compared with (18) is that in Eq. (19) one takes 
the derivative of known functions. 

I take occasion to note with gratitude that G. A. 
Drukarev, A. B. Migdal, V. A. Fok, and L.A. Khal
fin have taken part in the discussion of this work. 
I must note particularly the important participa-
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tion and assistance of N. A. Dmitriev, who provided 
formal proofs of a number of assertions contained 
in this paper. 
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