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Possible covariant theories of multiple particle production are analyzed under the condition 
that the matrix element can be factorized. The multiplicity .of the secondary particles is 
computed by assuming that the matrix element is a power function of the energy of the par­
ticles involved in the process. 

}. The probability WN that N particles with <Di (K0 , k,) = C (KovkJv) I (Kovkov), (5) 
masses m 1, m2, ••• mN are produced in the colli- <Di(Ko, ki) =c. (6) 
sion of two particles is of the following form: 

N N 

x ( Ko- ~ k1) Jl 6 (k~ - m') d4k1, 
/=1 /=1 

(1) 

where K0 ( iP0, E0 ) is the four-momentum of the 
initial state, kj ( ipj, Ej ) is the momentum of the 
j-th particle, and 4> (K0, k1, ••• kj) is an invari­
ant function depending on the character of interac­
tion of the particles. 

We shall consider the case where the interac­
tion between the particles is sufficiently small so 
that we can neglect the correlations. The function 
4> ( K0, k1, ••• kN) can then be represented in the 
form of the product 

N 

<D (K0 , k1o .• · , kN) = fi <Di (K0 , ki)· (2) 
i=l 

In the following, we shall limit ourselves to invari­
ant functions of 4>j ( K0, kj) of a special class, such 
that 

<Di (K0 , k,) = C (Kovkjv)q I CV KovKov)8 , (3) 

where C is independent of Ko and kj, and is de­
termined by the coupling constants, masses,* 
spins, and isotopic spins of the particles; q and s 
are integers. 

Taking Eq. (2) into account, the relation (1) can 
be converted into the form 

N N N 

w N = ~ ~ 0 0 0 ~ 64 ( Ko- p ki) n <D, (Ko, ki) Ej1d3pr (4) 
2 J=l J=l 

We shall dwell in detail upon the important special 
cases: 

*Moreover, the mass dependence should be such that WN 
is a dimensionless quantity o 

The fw1Ction (5) corresponds to the statistical 
Fermi theory ,1 and the function (6) to the theory of 
Shrivastava and Sudarshan2 ( SS theory). 

The special cases based on the choice of Eq. 
(5) or Eq. (6) are of special interest because of the 
possibility of giving them a simple and clear inter­
pretation. The physical interpretation of the Fermi 
theory is well known. The choice of 4>j ( K0, kj) 
in the form (6) can be treated in the following way: 
expanding the meson field of the nucleon (at suffi­
ciently great distances from its center) in a Four­
ier integral, it is found3•4 that the probability wj 
of a pseudoscalar meson having momentum in the 
interval Pj. Pj + dpj is equal to 

(7) 

If wj is independent of the remaining wk ( k 
¢ j ), which is equivalent to the assumption of 
statistical independence of the particles, then the 
probability of N mesons being in the states with 
momenta Pj ... PN is equal to the product of cor­
responding probabilities for separate particles. 
Furthermore, in line with the Lewis, Oppenheimer, 
and Wouthuysen theory4•5 (LOW theory), the proc­
ess of multiple particle production can be inter­
preted as the breaking up of a meson cloud without 
any change in its internal state (i.e., conserving 

N 
the distribution .II d3pj I Ej ). 

]=1 

Such an interpretation leads to Eq. (4), under 
condition (6). It is, however, necessary to mention 
that the SS theory is then not fully equivalent to 
the LOW theory, since the role of nucleons in the 
collision process is treated differently in the two 
theories. While, according to the LOW theory, it 
is necessary to assume that the nucleons lose a 
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relatively small energy fraction, and consequently, 
have to be treated as separate particles from the 
energy point of view, the nucleons are treated 
equally with other particles in the relations (4) and 
(6). In essence, the mathematical formulation of 
the LOW theory is reduced to the following rela­
tion 

N N 

WN~ ~ o4 (K- ~ kj) A (K1, K2) p d3pjjef' 
1=3 1=3 

(8) 

where K == K0 - K1 - K2; K1 and K2 are the four­
momenta of both nucleons determined by the mech­
anism of the process. The summation and multi­
plication is carried only over meson indices. 

2. We shall calculate the probability WN for 
the class of theories indicated in Sec. 1. We have 
previously developed a method of calculating the 
quantity (4) for the Fermi theory [assumption (5)]. 6 

Here, we shall apply this method for calculating 
Eq. (4) with 4>j in the form (3) with arbitrary q 
and s; in particular, we shall obtain formulas for 
the SS and LOW variants. 

In order to simplify the calculations, we shall 
consider the problem in the c.m.s. (Po== 0 ). Since 
the probability W N depends only on the invariants 
E~ - P~ and mj, it is necessary to make the sub­
stitution E~ - E~ - P~ in the final expressions in 
order to go over to the general case Po ~ 0. Using 
the Fourier transform of the o function, we trans­
form (4) to the form 

For future calculations, similarly to what was 
done by us earlier, 6 we shall expand the product of 
the Hankel functions in a series and integrate it 
term by term. As a result, we obtain the expres­
sion for (9) in the form of a non -power series of a 
small parameter Vj 

(13) 

In particular, the first term of this series, inde­
pendent of vy (which corresponds to ultra-rela­
tivistic particles ), is of the form 

eN nN-1 (q !)N 
WN = 2N<q+1) 1 

(2N (q + 1) -- 4)! Elj <2+2q-s)--4 

X IN(q+2)-4]![N(q+1)-1]![N(q+1)-2]! 
(14) 

We shall estimate the variation of the most­
probable value of N with energy. If N is suffi­
ciently large so that we can use the Stirling for­
mula, we obtain 

(15) 

In the case of the SS or LOW theory ( q == 0, s 
== 0 ), we obtain the following expression for WN 

W __ C N (:!:__)N-1 (£2)N-2 { 1 ·-- _ 1 
N - ,2 c (N- 1)1 (N- 2)! (N --;2=)!c-7(N=-----,3"")! 

N N-2 N-3 N 

X [.~v/ln~ -(~ ~ + L} ~-!) _2>7) + ... } . (16) 
1=1 VI m=1 m=l 1=1 

The first term of this series has been obtained 
+co-is +co-is earlier. 4•7 In addition to the first term, Yakovlev7 

w N = eN (2N E~s-q) N (2n)4]-1 \ exp [- iT1Ecl dT1 \ d-; ) ) has, by different methods, obtained the expressions 
-co-iS -oo-iS 

N +co for W N for N == 3, 4, 5. However, in our opinion, 
x IT ~ ~ ~ (P] + mj/q-J)/zexp [i (T1 V PJ + m; + -;p1)] d3pr errors were committed in the derivation, and the 

i=1 -co ( 9) expressions are not correct. 

The integral over Pj can easily be transformed 
to the form 

X (Pj + mJ)-'1'dp1 =- 2~q -4 :r inH~ (mi V 't~- 't2) 
'tl d'tl (10) 

[where H~t) ( z) is the Hankel function]. The phase 
cp of argument mj.J Tf - T2 is chosen in the follow­
ing way: 

cp=U for-r1>-r, cp=inj2for--r<-r1< -r, 
cp = in for 't1 < - 't. (11) 

Carrying out the differentiation, and using the re­
current formula for the Hankel function, we obtain 

In conclusion, the authors express their grati­
tude to E. L. Feinberg for helpful comments. 
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