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A general expression has been deduced for the width of low intensity shock waves in magneto­
hydrodynamics. The damping coefficient for small amplitude waves is determined and its 
relation to the discontinuity width is established. 

THE problem of the determination of the structure waves with the exception of the strictly perpen-
of shock waves in magnetohydrodynamics is math- dicular, in which v 1. H. However, as we shall see 
ematically very cumbersome and can be solved in below, the result does not depend on the choice of 
the general case only by numerical methods. At the coordinates and therefore it will be useful for the 
present time the structure of perpendicular shock perpendicular shock wave also. 
waves (i.e., traveling strictly perpendicular to the Let us consider a plane shock in which all the 
magnetic field) has been studied in sufficient de- quantities depend only on x. The general equation 
tail. 1-4 However, such a wave is only one of the for stationary one-dimensional flow can be written 
simplest types of shock waves in magnetohydro- in the following form: 4 

dynamics. So far as shock waves of the general 
types are concerned, the so-called oblique shocks, 
their structure has been considered only under 
certain simplifying assumptions, namely, under 
consideration of Joule dissipation only. 5 Even in 
this case, one has to resort to numerical integra­
tion, which complicates the investigation of the de­
pendence of the solution on its parameters. 

In this connection, it is interesting to investigate 
the structure of low intensity shock waves by a 
method developed by Landau and Lifshitz 6 for a 
shock wave in ordinary hydrodynamics, and by one 
of the present authors4 for a perpendicular shock 
wave in magnetohydrodynamics. Although this 
method does not make it possible to include in the 
discussion such peculiarities characteristic of 
strong shocks as isothermal and isomagnetic dis­
continuities, it nevertheless does make it possible 
to solve the problem in the general case for waves 
of an arbitrary type with consideration of all dissi­
pative processes. This is especially important in 
the study of the dependence of the solution on its 
parameters and on the special features arising 
therein. 

1. THE EQUATION OF A LOW INTENSITY SHOCK 
WAVE 

In what follows, it is convenient to select a set 
of coordinates7 in which the lines of the magnetic 
field and the streamlines of the liquid are parallel 
at great distances from the discontinuity. This 
set of coordinates can be introduced for all shock 

j = Vn/V = h, 

jVH~- Hnv.,- ~dH" fdx = 0, 

(1) 

(2) 

(3) 

(4) 

(6) 

Here the following notation is introduced: w, p, 
T, and V are, respectively, the heat function of a 
unit mass of the substance, the pressure, the tem­
perature and the specific volume of the medium; 
TJ and /; are the first and second viscosity coeffi­
cients, K is the coefficient of thermal conductivity 
of the medium, and f3 = ca 1 41l"a is the magnetic 
viscosity (a is the electrical conductivity of the 
medium and c0 is the speed of light). The ration­
alized system of units has been introduced for the 
intensity of the magnetic field. The index 1 denotes 
the value of the corresponding quantities at a large 
distance in front of the discontinuity. The indices 
n and T respectively denote the components of the 
vector velocity v and the intensity of the magnetic 
field H normal and tangential to the surface of dis­
continuity. 

Equations (5) and (6) contain only the squares 
of the tangential components HT and VT. Since 
Eqs. (3) and (4) are linear in vT and HT, then they 

521 



522 E. P. SIROTINA and S. I. SYROVAT-SKII 

can be transformed into equations containing only 
the squares H~ and v~. This transformation 
makes it possible to consider as low intensity dis­
continuities not only discontinuities in which all the 
physical quantities change but slightly, but also 
discontinuities in which the absolute values of all 
physical quantities undergo little change while the 
directions of the vectors v and H can change 
appreciably. 

The latter can be the case if the change of the 
vectors v and H inside the discontinuity are de­
termined by their rotation about the normal to the 
discontinuity. For rotational discontinuities, the 
angle of rotation can be arbitrary. However, for 
shock waves, the boundary equations require that 
the vectors v and H in front of the discontinuity 
and behind it lie in a single plane. Therefore, in 
the case of a shock wave, the rotation of the vectors 
v and H inside the discontinuity can exist only at 
an angle which is a multiple of 1r. 

So far as we know, this interesting case of shock 
waves has not been discussed to date. The diffi­
culty here lies in the fact that the problem of the 
structure of shock waves ought to be solved for 
nonplanar motion. However, in the approximation 
of weak shock waves considered below, this prob­
lem does not differ from the problem for plane 
motion. 

For low-intensity shock waves, the differences 
of the physical quantities 

~P=P-Pl> ~V=V-Vl> ~T=T-T1 , 

are small and we can limit ourselves in the equa­
tion to terms of no higher than second order of 
smallness in op, oV and so forth. Moreover, we 
make use of the fact that the inverse of the discon­
tinuity width 1/l, as will be seen from the results, 
has the same order of smallness as the discon­
tinuities in the quantities op, oV and so forth at 
the discontinuity, and consequently differentiation 
with respect to x increases the order of smallness 
by unity. 

Making use of Eqs. (3) and (4), we express the 
discontinuities oH2 and ov2 under these assump­
tions in terms of oV, with accuracy up to terms of 
second order: 

~H~ = a1W + b1 (W)2 + c1dV / dx, 

bv~ = aW + b ( W)2 + cdV I dx; 

(7) 

(8) 

a= V1a1, b = V1b1 + a112, c = V1c1 + (TJ/j) V1a1, 

a1 = 2j2H~1 I 11, b1 = 3j4H~1 I 112 , 

(9) 

We note here that in the solution of Eqs. (3), 
(4), (7), and (8) with respect to a, a 11 ••• , division 
is carried out by the factor D. which vanishes for 
rotational ( H~ = pv~) discontinuities. The appear­
ance of a singularity in Eqs. (7)- (9) for D. = 0 
signifies the absence of a stationary structure in 
these discontinuities. In fact, for rotational dis con­
tinuities, the boundary equations require an equality 
of density, pressure and, consequently, entropy on 
both sides of the discontinuity. This requirement 
is in contradiction with the increase in entropy as 
the result of dissipation. Therefore, the rotational 
discontinuities cannot have a stationary character, 
and are smeared out with passage of time, as was 
shown by Landau and Lifshitz8 for an incompressi­
ble fluid. 

Equations (5) and (6), with account of (7) and 
(8), reduce to the form 

bp + (j2 + + a1) W +-+ b1 (W)2 

+ [fc~-j (f 11 + ~)] dV I dx = 0, (10) 

6w + (j2V1 + +a)w + +(j2 + b2)(W)2 

+ [-+c-jV(fTJ+~)]dVIdx 
- (TJal2j)dV ldx = (xl j)dT jdx. (11) 

It is convenient to solve the systems (10) and 
(11) for op. For this purpose, multiplying (10) by 
V 1 and subtracting the result from (11) we get the 
following equation: 

6w- V16p +-+ (j2 +-+ a1) (W)2 =(xI j) dT I dx. (12) 

Further, taking the pressure p and the entropy of 
a unit mass s as independent variables, and repre­
senting ow, oV and oT in Eqs. (12) in the form of 
series in op and OS, we get for the first two terms 
(the contributions are similar to those obtained by 
Landau and Lifshitz6 ): 

x (aT) dp 
~s = TF ap s dx · (13) 

Equation (13) shows that for low intensity dis­
continuities in magnetohydrodynamics, with the ex­
ception of the vicinity of the singular point D. = 0, 
at which the expansions (7) and (8) are inappropri­
ate, the change in entropy inside the discontinuity 
is small in comparison with the change in pressure. 
Therefore, it suffices in what follows to limit our­
selves to the account of terms of first order in os. 
In this approximation considering (13 ), we have 

W = (~~)s 6p + ~ (~;), (~p)2 + i~ (~:)s (aJs)P ~~ . 
(14) 

Substituting this expression in (10), we obtain a 
differential equation for the pressure p (x ): 
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[ 1 + (·2 +.!!:__) (av) ]6 + ~ [t .2 + ~)(a2v) 1 2 ap • P 2 . \1 2 ap2 • 

+ b (aV )2J(fl )2 = _ { j2 + a1/2 ~(aT) (av) 
1 ap , p T I ap s as p 

[ c, . ( 4 ) (av) Jl dp + 2- 1 31J + ~ ap, s j dx ' (15) 

where op =p(x)- P1· 
In the case of the absence of a magnetic field, 

Eq. (15) reduces to the equation for p (x) in ordi­
nary hydrodynamics, introduced by Landau and 
Lifshitz, 6 inasmuch as the coefficients a1o b1o c 1 

tend to zero along with the intensity of the mag­
netic field. 

2. DAMPING OF SMALL AMPLITUDE WAVES IN 
MAGNETOHYDRODYNAMICS 

Equation (15) can be used directly for the deter­
mination of the damping coefficient of waves of 
small amplitude in magnetohydrodynamics. For 
this purpose, it will be sufficient to limit ourselves 
to the linear approximation, omitting from (15) the 
term with (op )2, and neglecting the difference be­
tween V and V1 in the expression j = vn/V. 
Moreover, taking into consideration the thermo­
dynamic relations 

(~~). =- p!c2' 

where c is the speed of sound and p = 1/V is the 
density of the medium, and also Eq. (9) for the co­
efficients a 1 and b1o we get as a result 

vn [ ( H~1 ) ' 1 1 ) 4 H~l dp 
pc2 1 + T X ( Gv- cp + (3 T] +C)+ -;v (p2v~p + H~T]) dX 

(16) 

In the process of deriving this equation, we 
have omitted terms with higher derivatives in addi­
tion to linearizing in the amplitude. In the initial 
equations (3)- (6), terms with first derivatives in 
x contain as a factor one of the dissipative coeffi­
cients TJ, l;, K, or {3. Therefore, in neglecting the 
products of these terms and terms with higher de­
rivatives, we actually neglect products of the dissi­
pation coefficients. This is equivalent to an as­
sumption on the smallness of damping, which will 
be considered in the present work. 

For perturbations whose time dependence has 
the form eikx, Eq. (16) reduces to the well-known 
relation between Vn and k: 

V4 - v2 (c2 + u 2 + u2 ) + c2u2 + ik ~ {[x (c1 - -c1 ) n n n' n p v p 

+(; 1J+~)]<u~-v~)+u~x(dv -c~) 
u2 } + ~(pv~~ + u~lJ) = 0, 

un- vn 
(17) 

Un = Hn/..fP is the Alfven velocity, u7 = HT / ..fP. 
Equation (17) for vn = w/k is equivalent to the 

dispersion equation for small amplitude waves in 
magnetohydrodynamics with consideration of weak 
damping. In fact, the time-independent equation 
(16) can be obtained from the general linearized 
system of equations of magnetohydrodynamics by 
a formal transformation of coordinates: x =X: 
+ vnt, and by a corresponding transformation of 
the desired functions ei<kx-wt)- eikx! (if vn 
= w/k ). Therefore, in the determination of the 
damping coefficient, one can start out immediately 
from Eq. (17), setting the phase velocity of the ex­
citation v = k-1Re w = Re vn and the damping coef­
ficient y = Imw =kim Vn· 

Without consideration of dissipative terms, Eq. 
(17) is reduced to the dispersion equation for 
small perturbations: 9 

v•- v2 (c2 + u~ + u~) + c2u~ = 0. (18) 

Solution of Eq. (17) in the case of weak damping 
can be represented in the form 

Vn = V + ivl = V -~- iy / k, 

where y « kv, and v satisfies Eq. ( 18). Substi­
tuting this solution in (17), we find the damping 
coefficient y, which determines the decrease in 
the amplitude of the wave with time as e-yt, 

r = k2a, (19) 

a= 1 ic2 (v2 - u2) [~ (__!_- -1-) 
'2(v•-c2u~) l n p cv cp (20) 

+ ;;2 (; 1J+~)]+(v2-c2)(v2~+ :~ 1]). 
For a parallel shock wave, the phase velocity of 
the wave v = c and the coefficient a is given by 

a = an = _1 [x (-1 - _1 ) + (.i..lJ + ~)J , (21) 
2p cv cp 3 

which coincides with the expression obtained by 
Landau and Lifshitz. 6 

For a weak rotational ( Alfven) discontinuity 
(v = vn) we obtain 

(22) 

As is seen from (22), the dissipation in this case, 
as in the case of an incompressible fluid, 8 is due 
only to the viscosity and the conductivity of the 
medium. 

For a weak oblique wave, considered as the 
limit for up = c2, u~- 0, we find from (18) and 
(20) that v = u~ = c2, and 

1 [ X ( 1 1 ) 1 ( 4 . ) ( T] \] ao = T p c;;- cP + p 31J + ~ + ~ + -p) · (23) 
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We note that in this case the damping coefficient is 
equal to half the sum of the coefficients in the ordi­
nary sound wave and in a weak rotational discon­
tinuity. 

For a perpendicular wave, in which u~ = 0, but 
uT = H~/p ¢ 0, we find v2 = u} + c2 and 

(24) 

3. WIDTH OF THE DISCONTINUITY 

The width of the discontinuity can be determined 
from Eq. (15). At large distances the pressure on 
the left and right of the discontinuity is equal to 
p1 and p2 respectively, while the right hand side 
of the equation vanishes along with dp/dx. There­
fore, the roots of the quadratic three terms on the 
left hand side will be p1 and p2, and Eq. (15) is 
equivalent to the equation 

dp =- A2 (p- P1)(p- Pz)· (25) 
dx 

The coefficient A is equal to double the ratio of 
the coefficients for dp/dx and (op)2 in (15); with 
the aid of the relations used in the derivation of 
Eq. (16), this coefficient can be written in the form 

(1 +H~I A)x(1 1Cv-11Cp)+(4TJ I 3 + ~)+(H~I A)2 (p2v2~ + H~TJ) 
X p•c• (1 + H~ 1 ~) (il2V I ilp2) 5 + 3v2H~ I~· (26) 

The quantity 1:::.. = H~- j 2V1 = p (u~- v2 ) ap­
pearing here depends on the velocity of the 
medium v relative to the surface of discontinuity. 
For this velocity we can substitute in Eq. (26) (in 
the approximation under discussion) the velocity 
of small excitations determined from the disper­
sion equation (18). Then A, with consideration of 
(20), takes the following form: 

A = sc•p (v4 - c2u~) a (27) 
v p"c6 (v2 - u~) (a•v 1 ap•). + 3 (v2 - c2) v• 

Integration of Eq. (25) shows (see, for example, 
reference 6) that the change in pressure takes 
place essentially in a layer of thickness 

(28) 

that is, l is the effective thickness of the discon­
tinuity. 

Let us consider in more detail the expressions 
(27) and (28) for the width of the discontinuity. For 
a parallel shock wave ( H~ = 0 ), Eq. (28) coincides 

with the width of the ordinary shock wave, 6 as it 
should, inasmuch as 

A = sv•a 11 (~)-1 = 4V" ( a•v )-1 [x (~ _ ~) 
n c" ap• s c" ap• s cv cp 

(29) 

The set of coordinates we have chosen is gen­
erally not suitable for consideration of a perpen­
dicular wave. However, Eq. (28) also contains the 
perpendicular wave as a limiting case Hn- 0 and 
HT ¢ 0. In this case, 

A = 4c [x (C~1 - CJ;1) + (4TJI3 + ~) (1 + u~ 1 c2) + p~u~ 1 c2 ] ( 30) 

Jl 1 + u~ I c• (p3c' (Q2V I ilp2) 5 + 3u~ I c•] 

and the width of the discontinuity coincides with 
that obtained earlier. 4 

As is seen from the derivation of Eqs. (10) and 
(11), the singular case 1:::.. = 0 is, strictly speaking, 
excluded from our consideration. In addition to the 
rotational discontinuity and discontinuities close to 
it, a singular oblique wave, 9 in which HT = 0 on 
one side of the discontinuity and 1:::.. = 0 on the other, 
also corresponds to this case. 

So far as the rotational discontinuity is con­
cerned, such a discontinuity (as has been noted 
above) cannot have a stationary width in the pres­
ence of a dissipation. Formally, this case corre­
sponds to an infinite width because of the vanishing 
of the denominator of Eq. (28). For discontinuities 
close to rotational, we get from (26), for 1:::.. = 0, 

4 c•( H~) 
A =ava pv2~+--pTJ . (31) 

However, as can be seen from Eqs. (7)- (9), in 
such discontinuities (i.e., for HT ¢ 0) oV, and 
therefore op also, must approach zero along with 
1:::.., and therefore Eq. (28) does not give a finite 
value for the width of the discontinuity. Thus one 
can conclude that both the rotational discontinuity 
and discontinuities close to it cannot have a sta­
tionary width.* 

For the singular oblique wave, considered as 
the limit of a shock wave for ut_ = c2 and u~- 0, 
the expression for A reduces to the following: 

4c [x(c~1 - Gp1) + (4"ll3+ ~) + (~P+TJ>] (32) 
A= p•c• (a•v;ap2 ) 5 + 3 · 

For such a limiting transition, the coefficients 
of the expansions (7) and (8) remain finite and, 

*Furthermore, we note that, in discontinuities close to 
rotational, the tangential component of the magnetic field 
changes sign. Such shock waves, as has been pointed out 
by Polovin and Lyubarski~,'0 are unstable relative to split­
ting (non-evolutionary). 
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consequently, the peculiarities which are charac­
teristic of rotational discontinuities do not appear 
here. 

4. THE CONNECTION BETWEEN THE DAMPING 
COEFFICIENT AND THE WIDTH OF A LOW 
INTENSITY DISCONTINUITY 

One can also arrive at Eqs. (27) and (28) for 
the width of the discontinuity by starting from the 
qualitative picture of shock wave formation. In 
fact, the stationary structure of the discontinuity 
is established as a result of the equilibrium of two 
opposing processes. The first of these consists in 
the smearing out of the jump under the action of 
viscosity, finite conductivity and thermal conduc­
tivity. The action of these dissipative processes 
can be described by a certain effective viscosity 
which for a wave of small amplitude is connected 
to the damping coefficient by the well-known rela­
tion 'Y = ak2, and therefore is determined by Eq. 
(20) in magnetohydrodynamics. The smearing out 
of the discontinuity as the result of dissipation has 
a diffusion character and the velocity of such 
smearing out V _ can be estimated from the relation 

l 2 ~ 4at, (33) 

where l is the width of the discontinuity and t is 
the time, measured from the moment of formation 
of the discontinuity. 

As the opposing process, we have the "entangle­
ment" of the discontinuity brought about by the dif­
ferent velocities of the excitation in front of the 
discontinuity and behind it. The "entanglement" 
tends to reduce the width of the shock which takes 
on a certain stationary value when both these proc­
esses are equal to one another, i.e., the rate of en­
tanglement V+ becomes equal to the rate of smear­
ing out V _. In this case the width of the discon­
tinuity, in accord with (33), becomes equal in order 
of magnitude to 

l z 4ajV+. (34) 

The rate of "entanglement" V+ is equal to the 
difference of the velocities of small disturbances 
in front of the discontinuity and behind it in a fixed 
system of coordinates: 

v+ = v' + t'lvav- v = t'\v + t'lvav• (35) 

where v' and v are the velocities of propagation of 
the waves of small amplitude under consideration 
relative to the medium on the two sides of the dis­
continuity, and ovav is the jump in the normal 
component of the velocity of the medium in the 
shock wave. 

In zero approximation (for magnetohydro­
dynamic "sound"), the velocities v' and v coin­
cide and are equal to the velocity of the discon­
tinuity. In the following approximation, one can 
determine ov = v' - v from the dispersion equa­
tion (18), in which it is convenient to select as inde­
pendent variables the density p and the tangential 
component H7 : 

v4 - v2 (c2 + H~! p + H~'; p) + c2H~/ p = 0. (36) 

Then 
av av 

t'\v = a t'\p + aH 6"~· p ~ 
(37) 

where we have taken it into consideration that Hn 
is continuous and the change in entropy is small in 
comparison with the change in the density. There­
fore, 

( ac) c [ p"c4 (azv) J t'\c z ap s t'\p = P 2 apz s - I t'\p. (38) 

Computing the derivatives 8v/op and 8v/oHT 
by means of (18), and taking it into account that in 
a wave of small amplitude [see reference 9, Eqs. 
(2.21) and (2.22)] 

t'lvav= vt'\p I p, 

we finally obtain: 

V + = t'\v + t'lvcp = [ v26p 2] [(v2- u2) pscs (azv 'I 
2pv v•- c2un n apz fs 

(39) 

(40) 

This expression for the rate of "entanglement," 
together with (34) again leads to Eqs. (27) and (28) 
for the width of the discontinuity. 

From the qualitative considerations that have 
been given, it is clear that the rotational discon­
tinuity for which "entanglement" is absent ( op 
= 0) cannot have a stationary width. 
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