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A microscopic calculation of magnetic relaxation in ferromagnets, due to sd exchange inter­
action, is carried out. Expressions are derived for the corresponding kinetic coefficients. A 
general phenomenological analysis of the problem is made with allowance for the so-called 
indirect relaxations. 

l. A theoretical analysis of magnetic relaxation in 
ferrodielectrics has been the subject of many 
papers. 1- 5 An additional relaxation, due to the sd 
interaction, should be observed in the case of a 
ferromagnetic metal. 

The purpose of the present investigation was an 
analysis of magnetic relaxation in ferromagnetic 
metals. We use the simplified model of a ferro­
magnetic metal, which starts out with the existence 
of two groups of electrons (cf., e.g., Akhiezer and 
Pomeranchuk6 ), the conduction ( s) and ferromag­
netic (d) electrons, and proceed to calculate the 
relaxation terms due to the sd exchange interac­
tion, in the spin-wave approximation. 

We note that Turov7 and Mitchell8 carried out 
microscopic calculations of the relaxation due to 
sd interaction. They have assumed, however, that 
the conduction electrons are also in equilibrium 
relative to the spin direction. 

2. The model we use for the ferromagnetic 
metal is quite crude. We therefore confine our­
selves to a consideration of the simplest case of a 
cubic crystal (iron, nickel). We assume further­
more that the external field H (which is aligned 
with the z axis) is so large that the sample con­
sists of a single domain. 

We denote by S and Sct the respective spin op­
erators of the conduction electron and of the elec­
tron shell of the ferromagnetic ion, by gs and gd 
the absolute values of their g factors, and by N 
the concentration of the ferromagnetic atoms. We 
have 

Na3 =v, (1) 

where a is the edge of the elementary cube and v 
is the number of atoms per elementary cube. 

We denote furthermore by M the magnetic mo­
ment (due to the d electrons) per unit volume of 
the ferromagnet, and by Ma the value of M in ab­
solute saturation (i.e., at oo K). We have 

(2) 

where {3 is the Bohr magneton. 
The energy operator of the exchange-interaction 

of the conduction electron with the ferromagnetic 
electrons will be written in the following form: 6 

V(r) = (Aj Ngd~)SM(r), (3) 

where A is the constant of the sd exchange inter-
action. 

In the expression 

SM = -i- (S+M- + S_M+) + SzMz 

the last term near the ground state is much greater 
than the others. Therefore, if we confine ourselves 
to states close to the ground state (i.e., if we con­
sider the case of temperatures which are much 
lower than the Curie temperature e ) , the operator 
Sz will commute with the exchange energy and its 
eigenvalue will be a good quantum number. 

It is well known that for states close to the 
ground state, the operators Mx and My are small 
quantities of first order of smallness, and Mz 
differs from Ma by a quantity of second order of 
smallness. Therefore, when finding the energy 
levels (states close to the ground state), we can 
replace M in (3) by Ma· This yields (see refer­
ence 9) 

V=-ASS,:. (4) 

We denote by Hs the effective magnetic field 
due to the sd exchange interaction, which acts on 
the spin of the conduction electron. Analogously, 
let Hd represent the effective field due to the sd 
exchange and acting on the spin of the ferromag­
netic ion. Using formula (4), we find 

H.=- A(Sdz) I g.~. Hd =-A <Sz> PI gd~. (5) 

where the brackets < > denote averaging, and p 

507 



508 BUISHVILI, KHUTSISHVILI, and CHEISHVILI 

is the number of conduction electrons per atom. tion rule (see, for example, reference 2) 

Considering that in states close to the ground state [M+ (r), M_ (r')J = _ 2gd~Mac'l (r _ r'). (10) 
almost all the d spins are directed opposite to the 
field, we have 

(6) 

The spin of the conduction electron is in a field 
H + Hs. Recalling the expression for the Pauli 
paramagnetic susceptibility, we obtain 

<Sz) =- 3gs~ (H + Hs) /8f1o, 

where JJ.o is the chemical potential of the conduc­
tion-electron gas. Consequently 

Hd = (3gsAP I 8gdflo) H + 3A2SdP I 8gd~flo· (7) 

However, the question of the second term in Hd 
calls for a detailed analysis. The point is that 
when we substitute the value of A, taken for the 
free ion ("' 0.3 ev ), the resultant second term is 
of the order of 100 koe, which sharply contradicts 
the experiment (this would cause a very strong 
shift of the resonant frequency). In this connection, 
Kittel and Mitchell believe that in a ferromagnet 
the constant A is reduced by screening by a factor 
of several times. However, so strong a screening 
appears little likely to us. 

We adhere to a second explanation. The second 
term (7) is due to the part of the conduction-elec­
tron polarization caused by the field Hs. There­
fore the second term in (7) coincides in direction 
with the magnetization due to the d electrons. It 
follows therefore that the second term in Hd does 
not give a rotational moment that acts on M, and 
consequently does not change the resonant fre­
quency (in this connection, see the papers by 
Yosida and Hasegawa 10 ). In quantum language, we 
can say that the Zeeman energy of the vector M 
in the additional field is independent of the orienta­
tion of M, and therefore drops out in the energy 
difflilrence. Thus, instead of (7) it would be more 
correct to write 

H d == (3gsAP I 8gdf10 ) H · (8) 

3. The spin Hamiltonian of the conduction elec­
tron can be written in the following form 

:!ff (r) = g5~HS2 + (Aa8 / vg ~) SM (r). (9) 

In the ground state, all the ferromagnetic spins 
are directed opposite to the z direction. The op­
erator M+ increases the overall d-electron spin 
projection by unity, while M_ decreases it. In 
other words, the operator M+ causes the produc­
tion of a ferromagnon, while the operator M_ 
causes its annihilation. According to the commuta-

Let the volume of the sample be unity. Then 

M_ (r) =- Jf2gd~Ma 2: a,eilr, (11) 
f 

where a£ and a£ are the operators _of production 
and annihilation of a ferromagnon w1th wave vector 
f, respectively. Substitution in ( 9) yields 

:Je (r) = (gs~H + AS d) Sz 

- .4Sd Jl gd~ j2Ma ~ [ats_e-itr + a,S+eitr]. (12) 
f 

In the derivation of (12), we substitute Ma for Mz 
in the term SzMz. 

Let us carry out second quantization over the 
conduction electrons. We readily obtain for the 
second -quantized Hamiltonian 

:Je = + (gs~H +AS d)~ (b~bk- d~dk) 
k 

(13) 

where Ji and ~ are respectively the ~perators of 
production and annihilation of a conductwn electron 
with a wave vector k and a spin projection Yz on 
the z axis. The operators dk and dk are analo­
gously defined for an electron with a spin projec­
tion - 1/ 2• 

It follows from (12) that the energy spectrum of 
the conduction electron in the ferromagnet has the 
form 

e (k, ms) = e0 (k) + (g.~H + AS d) m., (14) 

where ms is the eigenvalue of the operator Sz and 
Eo ( k) is the energy of the conduction electron in 
the absence of an external field and of sd exchange 
interaction. In further calculations we assume that 

(15) 

( m is the effective mass of the conduction elec­
tron). 

For the energy of the ferromagnon we use the 
expression11 

(16) 

where J is the dd exchange integral, and Heff is 
the total field acting on the spin of the ferromag­
netic ion. It is given by the formula 

Heft = H + H a + H d• 
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where Ha is the anisotropy field. Considering that 
A is considerably smaller than JJ.o• we can neglect 
Hd compared with H [see Eq. (8) ]. Next, since 
we consider the case of large H (compared with 
Ha ) , we can put Heff = H (we note that in the final 
result Heff is contained only under the logarithm 
sign). 

The dispersion law, given by (16), is valid only 
for values of f that are not too small. Accordingly, 
on the one hand, as indicated in references 3 and 
12, formula (16) can be used for temperatures 
higher than about 2 or 3° K; on the other hand, the 
spin-wave picture can be used for temperatures 
lower than approximately one-tenth the Curie tern­
perature. 

4. The second term in (13) causes transitions 
between the stationary states of the system. For 
example, the term afdk-fbk causes a process in 
which an electron with wave vector k and a spin 
projection Y2 is annihilated, and an electron with 
a wave vector k - f and a spin projection - Y2 

appears together with a ferromagnon with wave 
vector f. The overall projection of the spin is con­
served here (the projection of the ferromagnon 
spin is equal to + 1 ) since this an exchange inter­
action. 

Using standard perturbation theory, we readily 
obtain 

dn (f)/ dt = C ~ 6 [e (k, + 112)- e (k- f,- 112)- e (f)] 
k 

X {[n(f) + 1][1-g(k -f, J.l_}] g (k, J.l+) 

- n(f) [1-g(k, J.l+)]g (k- f, J.lJ}. (17) 

In this formula n (f) denotes the distribution func­
tion of the ferromagnons; g ( k, iJ.+) and g ( k, /J--) 
are the distribution functions of the conduction 
electrons with spin projections % and - 1/ 2, respec­
tively; iJ.+ and JJ.- are the corresponding chemical 
potentials; C is a constant given by the formula 

(18) 

We assume that the totality of conduction elec­
trons with given spin direction is both in internal 
equilibrium and in equilibrium with the lattice 
(therefore each of these totalities is described by 
a Fermi distribution with a temperature equal to 
the lattice temperature). This assumption is cor­
rect, since the corresponding relaxation time is 
exceedingly small (the process is not connected 
with spin flip). However, these two electron gases 
are generally speaking not in equilibrium with 
each other, and therefore iJ.+ "' JJ.-. On the other 
hand, the ferromagnon gas is not in equilibrium 
with the lattice. 

Our problem is to calculate the relaxation terms 
due to the sd exchange interaction. In addition, 
there are other relaxation mechanisms present, 
namely: a) the mechanism connected with the 
direct interaction between the conduction electrons 
and the lattice, 13•14 without account of the sd ex­
change, b) the mechanism connected with the in­
teraction between the ferromagnetic spins and the 
lattice, c ) internal relaxation in the ferromagnon 
gas. Neither the lattice nor the conduction elec­
tron participates in the latter case. In this relax­
ation, therefore, the total ferromagnon-gas energy 
and the z component of the magnetization remain 
constant. A Planck distribution is established with 
a certain temperature which, in general, is differ­
ent from the lattice temperature. 

Processes b) and c) are not connected with the 
conduction electrons, and must therefore proceed 
in the same manner in a ferromagnetic metal as 
in a ferrodielectric. 1- 5 

In accordance with the foregoing, we represent 
n ( f) in the following form: 

n (f) = n° (f) + fln (f), 

L:m (f) is a small addition. The temperature is 
measured everywhere in energy units. 

Taking into consideration the form of the func­
tions n° (f) and g (k, JJ. ), and also the conservation 
of energy (which is taken into account by the o 
function), we can readily bring (17) to the form 

dn (f) I dt = C h 6 [e (k, 1/ 2)- e (k- f, - 112)- e (f)] 
k 

X {n° (f)[ I- g (k, fl+)] g (k- f, [L_} 

x:[exp {(J.l+- J.l_) IT}- I] 

- [g (k- f, J.l_)- g (k, J.l+)l fln {f)}. (20) 

5. We denote by L/2 the absolute value of the 
overall projection of all the d spins, and by L0 

the equilibrium value of L. We have 

Lo = 2[NSd- :8n° (f)], 
f 

(21) 

When Sd = Y2• L represents the excess of the d 
spins directed against the field. 

We denote further by D the excess of the con­
duction electrons with spins directed opposite the 
field, and by D0 the equilibrium value of D. It is 
easy to see that the z components of the magnetic 
moments of the sample, caused by the d and s 
electrons, are to ( Y2 ) gdf3L and (%) gsf3D respec­
tively. According to Overhauser, 15 we have 

J.l+- J.l_ = 4[10 (Do- D)/ 3Np. (22) 
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We confine ourselves henceforth to the case of 
linear relaxation. For this purpose it is necessary 
to satisfy the rather stringent condition 

I h- ~-1/ T = 4~0 \ D0 - D J I 3N pT ~ I. (23) 

Considering that 

D0 = 3Np (ASd + g,~H) I 4!!o• 

the last condition becomes 

We have calculated the relaxation terms due to 
the sd exchange interaction. Since the quantity 
L + D is conserved in exchange interaction, dD/dt 
is given by (28) but with the opposite sign. 

6. Let us now take into account the fact that the 
spins of the conduction electrons, and also the fer­
romagnetic spins, interact not only with each other, 
but also with the lattice directly. The relaxation 
times of the direct interaction with the lattice will 
be denoted by T sl and T dl respectively. Then the 

IDo-DI ASd+g,f;,H 
Do T ~I. (24) relaxation equations assume the form 

In addition, in all the foregoing derivations we 
have assumed that the condition 

(25) 

is satisfied. Actually, the usual spin-wave. picture 
is not applicable otherwise. 

Taking all the foregoing into account, we now 
readily obtain 

dLjdt =-2C ~6 [B (k, + 112)- s(k- f, - 1/2)- B (f)] 
kf 

X {(!!+- ~_) T-1 n° (f)[ I- g (k, ~0)] g (k- f, !!o) 

- (g (k- f, f.to)- g (k, t-t0)]/1n (f)}. (26) 

The calculation of the second term in the case of 
arbitrary 6.n (f) is impossible. We shall assume 
that the ferromagnon gas is in internal equilibrium, 
i.e., n (f) is in the form of a Planck function with 
a temperature different from the lattice tempera­
ture. Then, taking (21) into account, we obtain 

11n (f)= a~~( f) 11T= [ 2 L; an;; f) r an;y) (Lo- L), 
f 

which can be reduced to the form 
(B:n:JS )'f•a3 

11n (f)= d ,1 [no (f)J2 e (f) e•(f)/T (L0 - L), (27) 
3~ (3/z) T ' 

where t is the Riemann zeta function. Taking (22) 
and (27) into account, (26) becomes 

dLidt=-(Do-D)IT.r't-(L0 -L)ITds. (28) 

and after rather lengthy calculations we obtain 

maA2T 
'! '! a '! I,d, 8-3 • n •1i (Np) •vJ 

where 
zez 

Isd = ---ln(ez-1), 
ez-1 

1 [ (ASd)2 J 
z = T BfA.o + gd~H ' 

co 

~ zdz z• 
Ids = 2 -z-+ -z-' 

e -1 e -1 

(30) 

In the extreme cases we have 

Ids = 11:2 I 3 for z ~ I ; 

Isd = ze-z, Ids= z2e-z for z > 1. 

(30a) 

(30b) 

b = Do-D 
T, 

where 

liT.=I/Tst+IITsd• IITd=IITdt+I/Td.s· (32) 

The solution of the system (31) has the form 

D (t) = D 0 + d+ exp (- !v+t) + d_ exp (- !v_t), 

L (t) = L 0 + l+ exp (- lv+t) + l_ exp (- !v_t), (33) 

with 

Further, the quantities l+ and L are expressed 
in terms of d+ and d_ by formulas such as 

d 1 I T ds 1 I T d - A 
T = 1/ T,- A= 1 I T,d 

The coefficients d+ and d_ are determined from 
the initial conditions. 

Thus, D and L in general are sums of two 
exponentials. 

7. Let us consider two particular cases. 
Case 1 (see reference 9). Assume that the fol­

lowing conditions are satisfied 

(35) 

The condition Tsz « Tsd denotes that the direct 
coupling between the conduction electrons and the 
lattice is conside.rably stronger than the couplings 
between these electrons and the d spins. We shall 
have here T s R: T sl· In the equation for D we can 
neglect the term ( L0 - L )/T ds· We then obtain 
D = ( D0 - P )/T s· It follows therefore that D ap­
proaches an equilibrium value with a relaxation 
time T s· For times much longer than T s we can 
neglect the term ( D0 - D )/T sd in the equation for 
i, and therefore L = ( L0 - L)/Td· 

As a result we obtain the solutions 

D (f)= D0 + [D (0)- D0] e-t!Ts , 

L (t) = L0 + [L (0)- L 0] e-f!T d. (36) 

We thus have in this case independent relaxation of 
D and L. 
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Case 2. Assume that the conditions 

(37) 

are satisfied; in other words, the s and d spins 
are coupled more strongly to each other than to 
the lattice. Here we have 

T.=T•d• 

The sum D + L is conserved in the sd exchange 
interaction. Therefore in the case of total absence 
of direct coupling with the lattice, D and L cannot 
relax to the values D0 and L0 [provided the con­
dition D ( 0) + L ( 0) = D0 + L0 is not satisfied]. It 
is easy to see that D and L will relax with a re­
laxation time equal to TsTd/( Ts + Td) to values 
Ds and Ls, which are determined from the condi­
tion that D + L is conserved and from the condi­
tion that they are stationary with respect to sd 
interactions. 

change interaction, (38), and their sum is D ( t) 
+ L(t), i.e., Ds(t) and Ls(t) are the quasi­
equilibrium values of D ( t) and L ( t), correspond­
ing to equilibrium under sd exchange interaction 
for specified D (t) + L(t). 

Thus, in our case we have the following final 
result: an equilibrium with respect to sd exchange 
interaction is established with a relaxation time 
A.~ 1; this is followed by a slower establishment of 
complete equilibrium, with a relaxation time A.: 1, 
and the equilibrium relative to exchange interac­
tion is maintained all the time during this process.* 

Case 2a. Assume that the following condition is 
satisfied in addition to conditions (37): 

T,<Td (i.e. Tsd<Tds), (43) 

Now Eqs. (41) and (39) yield 

')., _ r. 1 + 1 . 
- - T d T sl T dl ' (44) 

(Do-Ds)/T.=(L 0 -L,)jT. (38) D.= Do- [L0 - L (O)l T. / T d- !Do-D (O)J T.jT d· 

It is easy to get 

D.= (T d -t T.t1 {T dDo- TsLo + T. [D (0) + L (0)]}, 

L. = (T d + T.t1 {T.L0 - T dDo + T d {D (0) + L (0)]}. (39) 

For complete relaxation we have 

D (f) =Do+ (Ds- D0) exp (-').,_f)+ [D (0) 

-D.] exp (-')..+f), 

L (t) = L0 + (Ls- L0) exp (- ').._t) + (L (0) 

- L.] exp (-')..+f), 

where 

(40) 

').,+=.f-+.f-. ').,_= T !r (~• +rTd) <')..+, (41) 
s d s d sl dl 

Adding D and L and taking into consideration the 
fact that Ds + Ls = D ( 0) + L ( 0 ), we obtain from 
(40) 

D (t) + L (t) = (Do+ Lo) + {[D (0) 

- D0 ] + (L (0) - L0]} exp (- 'J.,_t). 

In other words, A.:1 is the relaxation time of the 
quantity D + L. 

We introduce the quantities 

D;; (t) = D0 + (D.- D0) exp (- ').._t), 

Ls (t) = L0 + (Ls- Lo) exp (- ').,_t). 

Then (40) assumes the form 

D (t) = D, (t) + [D (0)- D,] exp (- 'A,+t), 

L (t) = L. (t) + (L (0)- L.J exp (.-'A,)). (42) 

It is easy to see that Ds ( t) and Ls ( t) satisfy 
the condition of stationarity with respect to sd ex-

L. = L (0) + [L0 - L (0)] T./Td- (1- T,jTd)[D0 - D(O)]. 
(45) 

Let us consider relaxation in ferromagnetic 
resonance after turning off the alternating field. 
Under ordinary ferromagnetic resonance, a reduc­
tion in L takes place (saturation). Since our 
analysis is suitable only for relatively small devia­
tions of L from L0 (i.e., for small values of the 
resonance saturation parameter), we confine our­
selves to the case L ( 0) ~ L0• 

Let us consider furthermore that the magnetiza­
tion due to the d spins is considerably higher than 
the magnetization due to the s spins [i.e., L0 and 
L ( 0) are much greater than To and D ( 0) ]. Then 
(45) yields 

Ds =Do- [L0 - L (0)] T./T d• Ls = L (0). (46) 

According to (40) we obtain 

D (t) = D0 + [D (0)- D0] exp (- 'J.,+t) 

+ (L (0)- L0] [exp (- 'J.,_t)- exp (- 'A,+t)] T.jT d• 

L(t) = Lo+ [L(O)-L0]exp(-'A,_t). (47) 

Thus, in Case 2a, the fast relaxation drops out 
from L and only the slow relaxation remains. As 
regards D, it first deviates rapidly from its initial 
value (and at the same time an equilibrium is es­
tablished relative to the exchange interactiont.), 
after which it slowly relaxes to its equilibrium 
value. 

*This means that when A+t » 1 we have D(t) = D8 (t) and 
L(t) = L 8 (t). 

tThe corresponding term in L can be neglected, in view of 
the large value of L(O). 
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8. Let us estimate the quantities Tsd and Tds• 
given by (29), in the case of iron. 

From a measurement of the magnetization of 
the absolute saturation it follows that the number 
of magnetons per atom of iron is 2.22 (reference 
16). This leads to an average configuration* 
3d7• 78 4s0·22 for the iron atom, which yields Sd 
= 1.1 and p = 0.22. For the dd exchange integral 
we take the valuet J = 175k = 2.4 x 10-14 erg. We 
substitute furthermore the value v = 2 (since the 
iron lattice is body-centered cubic), a = 2.85 
x 10-8 em, N = 0.86 x 1023 cm-3, and gd = 2. The 
effective mass of the conduction electron in iron 
is unknown, and we shall use for it a value equal 
to 0.3 of the true mass of the electron, obtaining 
JJ.o = 1.4 x 10-11 erg. At the present time, there 
are no data on the numerical value of the sd inter­
action constant A in ferromagnetic metals. As was 
indicated in Sec. 3, it appears little likely to us 
that screening would reduce this constant by a fac­
tor several times ten compared with its value in 
the free atom; we put in (29) a value A= 4.8 
x 10-13 erg. For the constant B we obtain from 
(30) B = 190. It then follows from (30) that 

z = (0.8 + 1.3 · I0-4H)/T. 

where T is given in degrees Kelvin. 
Since our analysis holds only for temperatu:res 

greater than 2 or 3° K, we confine ourselves to the 
case z < 1. Equations (29) and (30a) yield 

T:d = 2. JOSTJn 0.8+ r3.10 4H' T~s = !Osyf. (48) 

These equations can be used from 2 or 3° K approx­
imately to 100°K. The condition Tds » Tsd is 
satisfied over this entire temperature interval. 

The expression for Tdz can be taken from the 
paper by Akhiezer, Bar'yakhtar, and Peletminskil.4 

The condition Tdz » Tds is satisfied over the en­
tire temperature interval of interest to us. For 
Tsz we use the expression obtained by Andreev 
and Gerasimenko. 14 Substituting the values of the 
constants for iron in the suitable formula, we ob­
tain 

(49) 

where .6-g is the deviation of the conduction-elec­
tron g factor from its value for the free electron 
(2.0023). If .6-g is of the same order ( 10-4 to 10-3 ) 

*The question of the average configuration is not completely 
resolved. See the paper by Mott and Stevens17 regarding another 
possibility. 

tThis value of J follows from the work by Fallot/8 in which 
the coefficient preceding Ts~ in the temperature dependence of 
the magnetization is determined. Here we took account of the 
fact that sd "' 1.1. 

for iron as for alkaline metals, then T sl » T sd• 
and Case 2a will take place (see Sec. 7). 

9. Kittel and Mitchell believe9 that in metals of 
the transition group of iron (in particular, in fer­
romagnetic metals), .6-g will be considerably 
greater than in the case of alkaline metals, in view 
of the overlap of the 3d and 4s bands. However, 
comparing (48) with (49) we see that in order for 
Tsz to become of the same order as Tsd• it is 
necessary that .6-g in iron be on the order of 0.2. 

The values of .6-g for metals of the transition 
groups are still unknown. In addition, in the deri­
vation of (48) we used the unscreened value of the 
sd interaction constant. We cannot therefore draw 
any final conclusions concerning the mechanism of 
magnetic relaxation in ferromagnetic metals. 

We consider that Tsz »·Tsd• and therefore 
Case 2a, considered above, takes place. The fact 
that the resultant value of T sd is so small should 
not cause any surprise: actually, the sd exchange 
interaction is strong (provided the constant A is 
of the same order as in the free atom ) . 

One might ask why the relaxation time T sd 
does not cause a broadening of ferromagnetic res­
onance (then the line width would be greater than 
the width measured in experiment). The point is, 
as was shown in Sec. 7, that in Case 2a the rapid 
relaxation drops out from the magnetization re­
laxation due to the d spins, and only the slow re­
laxation with relaxation time A.::1 remains. 

We assume that the width of the ferromagnetic 
resonance ( corresponding to a relaxation time 
10-10_10-9 sec) is due to the establishment of 
internal equilibrium in the d-spin system. This 
is very probable also because, according to exper­
iment, the width of ferromagnetic resonance is of 
the same order in ferromagnetic metals and in 
ferrodielectrics. 

However, in this case our calculation of Tds is 
inconsistent. Actually, in calculating the terms 
that contain .6-n (f) in expression (26), we assumed 
that internal equilibrium is established in the fer­
romagnon gas. Strictly speaking, such a consider­
ation would be valid only if the time of internal re­
laxation in the ferromagnon gas is smaller than A.:1, 

which, in our opinion, does riot take place. How­
ever, we believe that our calculation still yields an 
approximately correct value* of Tds· 

*We have also calculated the second term in the expression 
(26}, using the method employed in references 1-5. In other 
words, we have used the formula 

~ W (f) fl.n (f)= [~nO (f) rl ~ W (f) nO (f)~ fl.n(f). 
r r r , 

In the case z < 1 we obtain here for 1/T ds an expression that 
differs from (29) only by a factor equal to 3/4. We note also 
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It would be quite interesting to carry out reso­
nance experiments on the conduction electrons in 
a ferromagnet. However, if the constant A is not 
greatly reduced by screening, the resonance will 
be in the infrared region (the value A= 0.3 ev 
corresponds to a frequency 0.8 x 1014 cps). In 
particular, it would be quite interesting to investi­
gate the effect of saturation of ferromagnetic res­
onance on the resonance of the conduction electrons 
and vice versa. It would be also interesting to in­
vestigate the Overhauser effect in ferromagnetic 
metals, i.e., to measure the polarization of the 
nuclei in saturation of ferromagnetic resonance or 
resonance of conduction electrons. 

At high temperatures, near the Curie point, the 
field due to the ds spins acting on the conduction 
electrons will be considerably less than the value 
Hs given by (6). The conduction-electron reso­
nance should therefore shift towards the centimeter 
waves. It must be considered, however, that in 
this case the eigenvalue of the conduction-electron 
spin projection on the direction of the field will not 
be a good quantum number, since Sz does not 
commute with the sd exchange interaction Hamil­
tonian at high temperatures. 

The authors are grateful to M. I. Kaganov and 
to V. G. Bar'yakhtar for useful discussions. 
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