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The properties of the acoustic excitation spectra in crystals near the decay threshold are 
considered. The longitudinal-phonon attenuation due to the decay of the longitudinal phonon 
into transverse phonons, is shown to be proportional to k5• The effect of anisotropy on the 
phonon decay of transverse excitations is investigated. The weak coupling between acoustic 
vibrations causes a characteristic splitting of the spectrum near the decay threshold into 
two excitations with non-zero momenta. This can show up in neutron scattering experiments, 
where it causes the simultaneous existence of two peaks in the energy distribution of neu­
trons scattered at an angle close to critical. 

THE singularities of the spectrum of elementary 
excitations near their decay threshold have been 
recently considered by Pitaevskil1• He treated 
mainly the case of a Bose liquid. Although the 
qualitative picture also remains in force for acous­
tic excitations in crystals, there are in this case a 
number of particular circumstances, such as the • 
existence of three branches of vibrations, aniso­
tropy, and weak interaction (due to anharmonic 
effects) between the elementary excitations. 

We write the phonon-interaction Hamiltonian in 
the form 

Hint = v'- ~ y Wp,Wp,Wp,a+ a+ Up,+ Herro. adj. (1) 
V a,+p,=p, p, p, 

where the interaction constant y = 113/2 (pc2) -l/2, p 
is the density, c is the velocity of sound. The 
summation over the polarizations is omitted. 

1. THE DECAY OF A LONGITUDINAL PHONON 
INTO TWO TRANSVERSE PHONONS 

It is apparent that the decay of a fast phonon 
into phonons with smaller propagation velocities 
is possible kinematically. The polarization selec­
tion rules do not forbid such a decay, because 
along the crystallographic axes the velocity of 
longitudinal sound is greater than that of trans­
verse sound. Such a decay causes the attenuation 
of longitudinal sound from the very beginning. 

To calculate this attenuation or decay we will 
find the correction to the frequency w 11 ( q ), which 
is described by the diagram in Fig. 1. We have 

1: (p) = a-1 (p)- G;;I (p) 
it2w2 (p)~ w2 (q) w2 (p - q) d"qdw 

=--1_1 - .l j_ ' 3 
(2n)4 1i2 [w2-wl(q)-i6) [(w-e)2-wl(p-q)- ib) ( ) 

FIG. 1 

where w 11 ( p) and w 1 ( p) are respectively the fre­
quencies of the longitudinal and transverse 
branches. After integrating with respect to w and 
changing the variables, (3) can be brought to the 
form 

2 qm r2w (p) • 
~ (p)=- p~~Jiz ~ W_L (q) q dq 

0 

Pt w .l (u) (w .l (u) + w .l (q)) udu 

X j (w.l(u)+w.l(q)+P)(wJ (u)+w.l(q)-e-ib)' (4) 
I p-ql 

To calculate the attenuation in the phonon part 
of the spectrum, we put 

(5) 

The results thus obtained will also give the correct 
order of magnitude when dispersion is present. 
By substituting (5) in (4), and calculating the imag­
inary part as half the residue during the integra­
tion over u, we obtain 

Im ~ (p) =- 2iAc 11 p6 , 

A = 1zc 11 c .L (...!- _ _!_ (~)2 __L _!__ (~JL)•) ( 6) 
41i2 80 _24 C j__ I 16 C j_ • 

Hence, we have for the spectrum of elementary 
excitations 

w 11 (p) =cup- iAp6 • 

The attenuation is everywhere small. For p 
,.., 1/a (a is the lattice constant) we have Im w 

(7) 
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x ( p )/ w ( p) ""'a = li/ pca4• The parameter a has 
the value 10-1 to 10-2 for light elements and 10-3 

to 10-4 for heavy elements. It is not difficult to 
see that anisotropy does not introduce important 
changes in the result obtained. 

2. ALLOWANCE FOR ANISOTROPY IN THE 
PHONON DECAY OF EXCITATIONS 

The transverse acoustic branches, which are 
stable at the start, can split up into two excitations, 
one of which is a phonon. We will find the kine­
matic conditions for such a decay in the anisotro­
pic case. The laws of conservation of energy and 
momentum give 

<I>p(q) = e (q) + e (p- q)- e (p) = 0, e(p) = 1iro(p). 
(8) 

For small values of q we obtain 

<I>p (q) = (c (n)- vpn) q, 

where c ( n) is the velocity of sound along the di­
recti on n; q = nq: Vp = a E/8p. If c ( n) > vpn for 
all n, (8) has only the trivial solution q = 0. If p 
is increased along some direction, decay starts at 
the value of p for which the equation c ( n) = Vp · n 
is first satisfied, at least for one direction of n. 

We introduce the function cp ( p) as follows: 

qJ (p) = min c (nl 
vpn • 

i.e. cp ( p) is the minimum value of the ratio given, 
considered as a function of n for a given p. The 
equation of the threshold surface then takes the 
form cp (p) = 1. 

We investigate the attenuation of excitations 
close to the threshold of phonon creation. Taking 
into account, as in the preceding case, only the 
contribution from the diagram in Fig. 1, we obtain 
after integration over w: 

~ 2 \ q3dq d cos 9 d<:p 
(p) ~ r J X+ (c (n)- Vcn) q- 2f3;k!J.piqk + f3tkqiqk- i6 ' 

Attenuation occurs in cases where the denominator 
of the expression under the integral in (9) has 
zeros in the region of integration and is determined 
by half the residue at the corresponding pole. 
Close to a pole we always have x « ~p. This 
means that the correction to ~ E due to the decay 
is smaller than (~p )2, which will be confirmed by 
the result. 

For the denominator in (9) to tend to zero re­
quires apparently (for f3i = f3iknk): 

c (n)- Vcn ~ ~,l1p, 

(here the sign ""' means agreement in order of 
magnitude). But the function c (n) -v0n by hy­
pothesis has a minim urn at n = n0 and close to the 
latter c (n) -v0n takes the form 

c (n)- VcD = Q (M, 11!p), 

where Q (x, y) is some positive determinate quad­
ratic form. Hence, the important range of integra­
tion over e and cp is found to be ~e. ~cp ""' ..; f3i~Pi· 

Having calculated the residue in (9), we obtain 
near the threshold 

e (p) = e (Pc) + Vci1P + ~ikl1p111pk- iB (~111p)3. (10) 

We note that in the isotropic case for a threshold 
for decay into phonons to appear on the E ( p) curve, 
at least a point of inflection must exist. In the 
anisotropic case it is much easier to satisfy the 
conditions of decay. In particular, the presence of 
a point of inflection on the E ( p) curves along a 
given direction is not required. 

3. THE SPECTRUM CLOSE TO THE THRESHOLD 
OF DECAY INTO EXCITATION WITH NON­
ZERO MOMENTA 

Pitaevskil has shown1 that the decay of elemen-
" tary excitations into two excitations with momenta 
not equal to zero is also possible. In this case the 
spectrum of elementary excitations breaks up at 
the decay point ( p0 , Ec ). Its behavior beyond the 
decay point cannot be clarified without resorting to 
perturbation theory. 

In the case we are considering the treatment can 
be complete because the interaction of the elemen­
tary excitations is weak, which allows perturbation 
theory to be used, We will limit ourselves to the 
contribution to ~ of the lowest order in the coupling 
constant given by the same diagram (see Fig. 1). 
The Green's function in the approximation taken 
agrees with that found by Pitaevskil1 and has the 
form 

a-l (p) _:__ Vol1P -11e + 2~ y 8c (vcl1P -11e), (11) 

where v0 is the velocity of the elementary excita­
tion at the threshold point without taking interac­
tion into account; v c is the velocity of the excita­
tions at which decay occurs; ~p and ~E are the 
momenta and energy referred to the threshold 
point;* a""' ti/pca4 > 0. We choose in (11) that the 
branch of the root which is positive on the positive 
axis and which has a cut along the negative axis. 

*In (11) only the singular part of ~(p) is taken into account. 
The inclusion of the regular part causes an unimportant dis­
placement of the threshold point. 
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We shall show that v0 > vc. The function F (p) 
is introduced as follows: 

(12) 

Of course, F ( qc) = 0. The decay threshold Pc is 
that zero of the functions F (p ), which is closest 
to qc (for Pc > qc ), where the condition below 
must be satisfied; 

(13) 

where c is the velocity of sound. The latter in­
equality is necessary to make decay with phonon 
creation impossible. It is seen that, by virtue of 
(13), F ( p) > 0 in the range qc < p < Pc· Since 
F ( Pc) = 0, we have F' ( Pc) < 0 and, consequently, 
vo > vc. 

The energy of the elementary excitations is de­
termined by the poles of the Green's function, i.e., 
by the zeros of the double-valued function (11), 
which lie either on the real E axis on the first 
sheet of the Riemann surface to the left of the cut, 
or in the lower half-plane of the second sheet close 
to the cut. 

It is convenient to introduce new variables 

X= (vo- Vc) t1p I Ec, Y = (t1E- VcilP) I E0 , (14) 

in which the equation G-1 ( p, €) = 0 has the form 

x- y- 2ia Vu = oo (15) 

Here arg fY = ~ arg y, where in the first sheet 

we take 0 < arg y < 21r. Putting y = rei<P, we ob­
tain from (15) 

x- rcosq> + 2a Vrsin (q> 12) = 0, (16) 

r sinq> + 2a Vrcos(q> 12) = Oo (17) 

Equation (17) has solutions: cp = ± 1r and 
sin ( cp/2) = - a/ 6. Substituting cp = + 1T in (16), 
we obtain 

x+r+2aVr = o, (18) 

which is only possible for negative values of x. It is 
not difficult to verify that this is the only solution 
on the first sheet and that for x > 0 there is no 
solution of ( 15) on the first sheet. We note that 
r- 0 as x- 0, so that near Pc the dispersion 
law has the form ~E = v~p + 0 (~p2 ), the same 
as that of Pitaevskil. 1 

Further, putting cp = - 1r, we obtain real solu­
tions on the second sheet: 

Vr = a± V a2 - x. (19) 

The solution with the positive sign has a meaning 
when - oo s x s a./5: the solution with the minus 
sign has a meaning only when 0 s x s a 2• 

FIG. 2 

We consider finally the case when sin ( cp/2) 
= - a/6. In this case all the roots of (15) lie on 
the second sheet and satisfy the equality r = x. It 
is necessary, apparently, to satisfy the condition 
x:::: a 2, for which real solutions of (15) do not 
exist. The lines on which the poles of the Green's 
function are situated are shown in Fig. 2. The 
energies of the elementary excitations coincide 
with the poles situated on the line L1 and the 
branch L2 in the lower half-plane. 

Transforming again to ~p, ~ E, we obtain for 
~p < 0 

~E = Vo~P + 2aec (Jf a 2 - (vo- Vc) tl.p f Ec- a). (20) 

Equation (20) shows that ~E = v0 ~p for I ~P I 
» a 2Ec/(v0 - Vc) and ~E = Vc~P for I ~pI 
« a 2Ec/(v0 - vc>· We note, however, that as ~p 
- 0 the residue of the Green's function diminishes 
as ~p, which causes excitations with dispersions 
~E = Vc~P to have diminishing weight. 

For ~p ~ a 2Ec/(v0 - vc) the energy of the 
elementary excitations is given by the equation 

t1e = V0t1p- 2a2ec- 2iaec Jf[(v0 - Vc) t1p J Be]- a2• (21) 

For ~p » a 2Ec/(v0 - Vc) formula (21) determines 
the energy and attenuation of the elementary exci­
tations. The latter is proportional to ..j ~p. 

In the region (v0 - Vc )~p,..., a 2Ec the poles of 
the Green's function are close to the branch point 
and both formulae (20) and (21) lose their meaning. 
To clarify the situation in this region we use a 
representation of the wave function of the excited 
system with the aid of the Green's function, which 
has been given by Galitskil and Migdal: 2 

00 

('ljl (t) 'ljl (0)) =- iG (p, t) = i \ Im G (p, e) e-t•tdeo (22) 
p p ) 

0 

The integral (22) reduces to half the residue of 
G ( p, E) relative to the pole situated on the real 
axis [this pole is determined by Eq. (20) J and to 
the integral along the upper side of the cut. 

In the variables x, y we have (for ~p < 0 ) : 
xe-i•(p)t 

<'li'p(t)'i'p(O))=-bty• < +V• l a. -X a. a. -X 

• 0 0 f vii e-tu•.t dy 
-t- 2ta exp {- 1 (ec + Vcf1P) t} ) (x _ y)• + 4a.•y 0 

0 
(23) 
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a b 

P-p 

)>=-= 
p 

~q 
~p-q 

FIG. 3 

The integral in (23) essentially diminishes in the 
time ~t = 1/a2Ec· In the course of this interval 
both terms in (23) play an equal role for x ,.., a 2• 

For x « a 2 the second term is the most important 
and describes an excitation with energy Ec and 
decay time ,.., 1/ a 2Ec· 

When ~P > 0, the first term in (23) disappears. 
The second term, for ~p » a2 Ec I (v0 - v c), as 
can be seen without difficulty, reduces to the resi­
due with respect to the pole of the Green's function 
lying in the second sheet and determined by (21). 
When the coupling constant a becomes of the order 
of unity, the picture given above reduces to the 
case considered by Pitaevskil. 

In the case of weak coupling, the threshold ef­
fect gives a peculiar result in the neutron scattering 
spectrum. We will consider the scattering of neu­
trons by phonons in crystals of light elements 
(where anharmonic effects are comparatively 
large ) at a temperature T < a 2Tn ( T D is the 
De bye temperature). 

Close to the threshold, the principal contribu­
tion to the scattering cross section is given by the 
diagrams in Fig. 3 (a, b). The diagram of Fig. 3,a 
contributes a sharp line, the intensity of which is 
given by the formulae 

I_ {1- (1- (v0 - vc) tlp I a.•)-'1., flp = P- Pc < 0, (24) 
0 flp > 0, 

and the position of E is given by formula (20). 
The diagram of Fig. 3,b makes a contribution to 

the neutron scattering cross section of the form 

IG(p)i2 6(ep -ep-p-eq-ep-q)d3pd3q, (25) 

Here P is the momentum of the neutron before 
scattering. After integrating the cross section 
(25) with respect to q, we obtain a formula for the 
distribution of scattered neutrons in energy for a 
given loss of momentum p: 

BF (r} de 
dw = (voflP- fl.e)• + 4a.• (fl.e- vcfl.p) , 

(26) 

F (p) = 

( p• (P- p)• ) l pz (P- p)• 
2M- 2M - 8c- vcfl.p. (ca)• for 2M -~>eo 

+ vcfl.P 

0 
pz '(P -p)• 

for 2M-~<ec 
+ vcfl.p. 

(27) 

Formula (26) corresponds to a line of width 
.... a 2E0 , which appears for I vc~P I .... a 2Ec (~p < 0 ). 

Formulae (24) to (27) can be used to obtain the 
angular distribution and the distribution over en­
ergy of the scattered neutrons. Without giving the 
results, we will describe qualitatively the picture 
thus obtained. 

For angles ofscattering smaller than some 'Pc• 
there is a sharp line in the energy distribution of 
neutrons at the energy Eo ( cp ), the width of which 
depends on temperature and not on the angle of 
scattering.. When the angle of scattering tends to 
'Pc• the intensity of this line diminishes as cp 0 - cp. 
Apart from this line there is in the neutron energy 
distribution a background at energies greater than 
E0 (cp). For cp 0 -cp .... a 2 this background grad­
ually gathers up into a line of width .... a 2Ec, while 
the intensity of the line increases as cp - 'Pc- 0. 
The center of this line lies at the energy E1 ( cp ) 
> Eo ( cp ), where Et{ cp) - Eo ( cp) ,.., 'Pc - cp. For 
cp > cp 0 there is only a smeared-out line. 

We take this opportunity of expressing our grati­
tude to L. P. Pitaevski! and L. P. Gor'kov for val­
uable discussions. 
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