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We consider quantum mechanically galvanomagnetic phenomena in strong magnetic fields at 
very low temperatures in the limit where the lifetime of an electron is much larger than the 
period of its revolution in the magnetic field. We investigate metals with a quadratic disper
sion law. We obtain formulae for the scattering of an electron by an impurity when a magnetic 
field is present. 

I. M. Lifshitz and co-workers1•2 have recently 
constructed in a number of papers a semi
classical theory of galvanomagnetic phenomena in 
metals in strong magnetic fields, taking the com
plicated character of the dispersion law for the 
elementary excitations into account. Also, a num
ber of authors3- 5 obtained the quantum corrections 
to the resistivity tensor (the Shubnikov-de Haas 
effect). The results of different papers are, how
ever, not in agreement with one another. A clari
fication of this problem is essentially connected 
with the paper by Adams and Holstein, 6 in which 
the transverse part of the conductivity tensor 
era a< a = x, y; H is parallel to the z axis) was 
evaluated for a dispersion law € = p2/2m and in 
which the calculations of other authors were 
analyzed. 

We obtain in the present paper expressions for 
erik for metals with a small number of carriers, 
the dispersion law of which we know with assurance 
to be very close to quadratic. The energy surface 
can then be split up into several mutually noninter
secting ellipsoids. Bismuth is a typical example of 
such a metal. 

One of the basic problems which arise also in 
the quantum case is that of taking into account the 
specific character of the scattering of an electron 
by impurities when a strong magnetic field is 
present. It will be shown in the following that in 
several cases an account of this fact determines 
in an essential way how the different quantities 
depend on the magnetic field. 

1. FREE ELECTRON IN A MAGNETIC FIELD 

We consider the motion of an electron with an 
arbitrary quadratic dispersion law 

(1) 

in a strong magnetic field. We find the wave func
tions and energy eigenvalues from the Schrodinger 
equation (here and henceforth ti = c = 1) 

where llik is the symmetrical inverse mass 
tensor and Ai the components of the vector 
potential of the magnetic field. 

It is well known that the state of an electron in 
a magnetic field is characterized by the following 
quantities: the momentum pz along the z axis, 
the momentum Py which is connected with the x 
component x0 of the center of the orbit along the 
x axis by the relation 

and the magnetic quantum number M. In the fol
lowing the index n denotes the set of all these 
quantities. 

The energy eigenvalue of the n-th state is 

where w = eH../ mzz /I m I, mik are the components 
of the mass tensor ( mik = 11{~·) and I m I is the 
determinant of the mass tensor. 

We need in this paper the quantity 

If we use the well-known solutions of Eq. (2) we 
get easily 

(3) 
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2. SCATTERING OF AN ELECTRON IN A 
MAGNETIC FIELD BY AN IMPURITY 

We need to know in the following the scattering 
amplitude for the scattering of an electron in a 
strong magnetic field by an impurity. Finding this 
amplitude is made much easier by the fact that for 
the metals with a small number of carriers, which 
we are considering, the electron wavelength is 
large compared with the range of the potential. It 
is well known that in that case we can use a o
function potential to evaluate the transition ampli
tude 

U (r) = ffl (r), (4) 

where f is the scattering amplitude for a zero
energy electron, when there is no magnetic field 
and where we have assumed for the sake of sim
plicity that the impurity is at the origin. We have 
then for the amplitude for the transition from the 
state n to the state m: 

F mn = ~ 'IJ;,. (r) U (r) 'Pn (r) dr = N;,. (0) 'Pn (0). (5) 

Using this expression for the transition ampli
tude we can obtain the total probability for a tran
sition from the state n to any state m (Em = En): 

W n = 2;r,f2 ~I 'ilm (0) 12 1 'iln (0) 12 fl (En- Em) 
m 

= Jl2n;-If21 'iln (0) !2 ffi i m !'/,~[En-- ffi (M + 1/2)]-'1•. (6) 
M 

The summation is over those values of M for 
which the expression under the radical sign is 
positive. It is clear from the expression given 
here for Wn that one can ct oose a value of the 
magnetic field in such a way that En = w ( N 
+ 7'; ) + 1:::!., I b. I « w. If b. > 0 and sufficiently 
small, 

i.e., when b.- 0 the total transition probability 
tends to infinity. The result obtained indicates 
that if one takes the influence of the magnetic 

(7) 

field on the scattering into account only through 
Eq. (5), this will, as is well known, be insufficient 
in the neighborhood of some values of the magnetic 
field. 

We try to find those corrections to Fmn in the 
higher approximations in U which are due only to 
the presence of the magnetic field. Generally 
speaking, one can only use the potential in the 
form (4) when looking for the transition amplitude 
in the first Born approximation. We retain (4), 
however, also when looking for the next approxi-

mations in the scattering amplitude, but keep in 
the different terms only expressions which are 
essentially connected with the magnetic field. 

The exact transition amplitude is in the form of 
a series 

,-, umkukn ~ umkukluln 
Fmn = Umn -L.J Ek -E-i{) + L.J (Ek-E- i{)) (E1 -E -i{)) · 

k k, l (8) 

We consider the second term in that series in 
more detail 

-~ UmkUkn. =-f2'1J. (O)'IJ (O) ~ 11Jlh(O)i2
. 

k Ek-E-t6 m n k Ek-E-t6 

=- f2'1J;,. (O)'!Jn (0) ro~.:~·;, {i ~ [£- ro (M + 1/2)1-'/• 
M 

+~[ro(M+ 1/2)-E]-'1"}. (9) 
M 

Here and henceforth the summation over M is 
only over those values of M for which the respec
tive expressions under the square root sign are 
positive. The second sum within the curly 
brackets diverges. This divergence is caused by 
the fact that we have used a o -function potential. 
If we take f to mean the total amplitude for 
E = 0 when there is no magnetic field, we must 
simply drop the divergent terms. The correction 
to the scattering amplitude in the second Born ap
proximation will be small except when the energy 
is very near a odd-half-integral multiple of w, 
i.e., b.- 0. If the absolute magnitude of b. is 
sufficiently small the expression within the braces 
is equal to 

{ i 
i _IVA ,8>0 

VA-) _1_ t. 0 
~vm· < 

and we get for (9) as b. - 0 

_ f2'1J* (O) 'iJ (O) iro I m 1'1• . 
m n z'l•n VA 

We note easily that if we retain only the terms 
that tend to infinity in the series (8) near b. = 0, 
we get the simple geometric series 

Fmn = N;,.(O)'!Jn(O){l-fGl + f2G~- .. . } 

= f'!J;,. (0) 'Pn (0) (1 + fGltl, 

colml''• 
01 = 2'1•nVA . (10) 

From the relation just obtained it is clear that as 
b.-- 0 
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In some cases the amplitude has still another 
singularity. Let !::. < 0. Then 

Fmn=N* (O)'IJ (O){I+ fw!ml'l• l-1
• 

m n 2'1•n Villi/ 

If f < 0 then for some value of I !::.0 I such that 

I ~o 1'1' = - fw I m 1'1• I 2'1' n ~ w, 

Fmn will tend formally to infinity. It is clear that 
when !::. = -I !::.0 I and !::. = 0 Eq. (10) for the transi
tion amplitude becomes incorrect, for in fact the 
amplitude will tend neither to zero nor to infinity. 

It is easiest to correct Eq. (10) near !::. 
= - I !::.0 I. Near this point it is no longer pcssible 
to discard the finite imaginary part in Eq. (9). 
Taking this fact into account, we get the following 
expression for the amplitude near the resonance* 

F =N* (O)'IJ (0) {I+ fw!mr't, 
mn m n 2'/•:rr, ~~ 

no impurity the electron is in the ground state 
with M = 0. The attraction of the impurity causes 
the energy to become equal to 

There is then in the sum (13) a large term corre
sponding to M = 0, which is equal to 

w I m 1'1• 
G1 (E) = -,2'"'t.n-V--";cw=;='=2=-=E~' 

so that 

'I' (r) =- ~ [G0 (r, r') + G1 (E)] U (r') 'I' (r') dr' 

= GI(E) IX- ~ G0 (r, r') U (r') 'I' (r') dr', 

IX=-~ U(r') 'IJ (r') dr'. 

One obtains easily from this equation the fact 
that 1/J(r) =Gt(E)al/J0 (r), where l/!0 (r) is the 
electron wave function for E = 0 in the field of the 
impurity when there is no magnetic field. It is 

(11) clear that 

We note here that the resonance width ( .~E )res 
is much smaller than the width of the interval t::.E 
in which the amplitude is less than its classical 
value, namely 

(~E)res ~ ~E Jf~/", 

where 0' is the scattering cross section for H = 0, 
and 1/A. ~ -../mE. The presence of such a resonance 
is connected with the existence of a bound state of 
the electron in the attractive potential when a mag
netic field is present. To find the energy and the 
wave function of this bound state we turn to the 
integral equation for the wave function 

where 

'IJ (r) =- ~ G (r, r'; E) U (r') 'IJ (r') dr', (12) 

'\,.l 1Jln (r) ljJ: (r') 
G (r, r'; E)= £.J E _ E _if> 

n 
n 

(13) 

is the electron Green function. It is necesEary for 
us to find the wave function in the region where the 
attractive force is acting, i.e., for very small 
values of r and r'. In that region, howeve:r, 

G (r, r'; E)= G0 (r, r') + G1 (E), 

where G0 ( r, r' ) is the electron Green function for 
E = 0 when there is no magnetic field. To obtain 
G1 (E) we take it into account that when there is 

*Skobov obtained this result independently of the disper
sion law E = p2 /2m. I use this opportunity to thank Skobov for 
sending me his manuscript prior to its publication. 

f = ~ U (r) 'l'o (r) dr, 

from which one obtains easily a condition for 
finding the energy 

1 =- fGI(E) =- fw lm l'l•j2'1,nlf w;2- E, 

E = wf2- / 2w2 1 m l/8n2 • 

This is indeed the energy of the bound state. 

(14) 

Using (12) one obtains easily an expression for 
the wave function of the bound state far from the 
impurity (for the sake of simplicity we have 
written down here the expression for the cose 
E = p2/2m) 

'IJ(r)=Aexp{-lziJ/2m(w;2-E) -~ (x2 +y2)eH}, 
(15) 

where A is a normalizing factor. It is clear that 
there can only be a bound state if the magnitude of 
the reciprocal volume occupied by the electron is 
much larger than the impurity concentration, i.e., 
the condition 

must be satisfied. 
It is clear that the resonance found in the fore

going for the scattering of electrons when M > 0 
is caused by the virtual transition to the bound 
state. In the following we discuss the problem of 
the possibility to observe this resonance by inves
tigating the behavior of the resistivity in a magnetic 
field. 

We now turn to an investigation of the behavior 
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of Fmn near t::. = 0, i.e., near the point where it 
tends to zero, according to (10). To do this we 
turn to the integral equation for the wave function 
1/J(r) 

'\jln {r) = '\jln0 (r)- ~ G (r; r'; E) U(r') '\jln (r') dr'. (16) 

When t::. r:::; 0 Eq. (13) for G (r, r'; E) can be 
written as the sum of two terms 

G (r, r'; E)= G' (r, r'; E)+ 1:!.-'J,gN (p, p'), i'l---+0. 

In the expression for G' ( r, r'; E ) the summation 
is over all magnetic quantum numbers M ;o< N 
( E = w ( N + Y2 ) ) and we can thus put t::. = 0 in 
G'( r, r'; E) and gN (p, p'). It is clear that 
gN ( p, p') is independent of z and z', i.e., the z 
component of the vector p is equal to zero. 

The function 1/Jn ( r) satisfies in the point t::. = 0 
two equations 

~ gN (p, p') U (r') '\jln (r') dr' = 0, (17) 

'\jln (r) = '\jln 0 (r) +A (p)- ~ G' (r, r'; E) U (r') '\jln (r')dr', 
(17') 

where A ( p) is some function which is independent 
of z and which is determined by (17). Because (17) 
must be satisfied for any p, Eq. (17') is equivalent 
to the condition 

~U (p, z) '\jln (p, z) dz = 0. (17'') 

If the potential U ( r) is sufficiently weak it is 
clear from (17') that 

a21Pn a21Pno n 
az2 = az2 =- (Pz)2 '\jlno• 

p~ =f=O. 

We put 1/Jno ( r) = exp ( ip~z) CfJn (p ). We have then 
from (17'') 

'\jln (p, 0) ~ U (p, z) dz + ip~ q>n (p) ~ zU (p, z) dz 

(pn )2 (' 
- +q>n (p) J z2U (p, z)dz = 0, 

SzV (p, z) dz 
'\jln (p, U) =- ip~ IPn (p) S U (p, z) dz 

(p~ )2 Sz2U (p, z) dz 

+-z-q>n(P)S V(p,z)dz · 

We now get easily the amplitude for the transi
tion from the state n to the state m 

F mn = ~'ljl;,0 (r) U {r) '\jln (r) dr = P~ p';! ~ drxp;, (p) (jln (p) 

x {~ z2U (p, z) dz - (~U (p, z) zdz]2 j ~ U (p, z) dz}, 

p~ =/=0, p-;'=f=O, (18) 

i.e., we get for t::. = 0 a transition amplitude which 
though very small is different from zero. 

We considered the case where there was one 
group of electrons. In practice, however, the 
energy surface in metals splits up into several 
ellipsoids and to each of these there corresponds 
a well defined group of electrons. In the scatter
ing field of the impurity there are now possible 
not only transitions within a given group, but also 
a transition from one group into another one. In 
the following we shall give a qualitative analysis 
of this case. 

We can now write the wave function in the fol
lowing form 

'ljl (r) = 'ljl~ (r) e'Ptr' 

where 1/J~ ( r) is the solution of Eq. (2) with the 
inverse mass tensor f.Lfk corresponding to the 
ellipsoid with index 1, while the phase factor 
eiPZr is due to the fact that the center of the 
ellipsoid in quasi-momentum space is not the 
same as the origin. 

It is now no longer possible to assume the 
potential to have a o -function shape, since when 
an electron goes from one group to another there 
occurs an appreciable transfer of quasi-momentum. 
At the same time, we shall assume that when H 
= 0 the potential is a Born potential. We have then 
in first approximation 

Fz;;n = ~ e-Pt•r 'ljl~· (r) U (r) e1Ptr 'ljl~ (r) dr 

= 'ljl~· (0) 'ljl~ (0) ) e -i (Pt•-Pt> r U (r) dr 

= ft·t 'ljl~· (O) 'ljl~ (O) = u~~. 

We assume now that in the group l 0 there is 
for given H a state with vz ,..., 0, i.e., t::.z0 ,..., 0. It 
is now no longer possible to restrict ourselves to 
the first Born approximation, so that 

It is clear that in the sum over intermediate 
states we must retain only the term with li = Z0• 

The term in the second order in U is then of the 
form 

l'• l - fl'l, ft,l '\jlm (0) '\jln {0) Gt, (£), (19) 

where 

G 1, (£) = iffi1, I m1•j'l•j2'1• n V ll1, • (19') 

When we consider the terms in the next approx
imations in U we find easily that near t::.z0 = 0 

p~'l = 'ljlt·• (O) 'ljll (O) [t, _ tl'l, t,,, a,, J 
mn m n ll 1+Gt, ft,t, 
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and that as 

we have 
1'1 I'• I F mn = '¢m (0) '¢n (O)[fl'l - fr1, fL.J/fi,J,}. (20) 

From this formula it is clear that if either l or l' 
is equal to lo the corresponding amplitude tends to 
zero. When l ¢ l 0, l' ¢ l 0 it is always different 
from zero. 

It is easy to investigate the case when for two 
or more electrons there occur states with Vz = 0. 
To do this we turn to the integral equation for 
1/J(r) 

'Pn (r) = 'IJ~o (r) e'P1 r- ~ G (r, r'; E) U (r') 'Pn (r') dr'. (21) 

One can write the function G ( r, r'; E) in the form 

iPj (r-r') 
G (r, r'; E)= ~e Gi (E)+ G0 (r, r'), 

I 

where Gj is described by Eq. (19') and where 
G0 ( r, r') is the Green function when there is no 
magnetic field. 

As we assume the potential to be a Born one, 
we can neglect on the right hand side of (21) the 
term with G0• We have then 

'lln(r) = o¢!o (r)/Pir _2;/Pir G1(E) ~e-iPjr' U (r') '\jln (r') dr'. 
j (22) 

Here 1/J~ ( r) is the electron wave function when 
there are no impurities. By definition the ampli-

tude of the transition from a state described by the 
wave function 1/J~ ( r) to a state 1/!fu0 ( r) is 

F;;,~ = ~ e-ip,, r 'ljl;;,~ (r) U (r) '\jln (r) dr, 

where 1/Jn ( r) is a solution of Eq. (22). It is thus 
necessary to know 1/Jn ( r) within the range of the 
potential. Assuming as before that the potential 
is a. short-range one we can put in (22) 1/J~ ( r) 
constant within the range of the impurity field. 

It is, however, not possible to replace the ex
ponential by unity since when we go from a state 
corresponding to the group l to a state correspond
ing to the group l', a large momentum transfer 
takes place. If we take this fact into account we 
can write the solution of (22) in the form 

'\jln (r) = 'l)l~o (0) {e'PI r - ~ /PJ r Gi (E) 1:1-j}· 
j 

It is clear from Eq. (22) that the quantities aj 
can be found from the equation 

(23) 
k 

The final expression for the amplitude Fh/n will 
be of the form 

(24) 

We easily get from Eqs. (23) and (24), for in

stance, the expression for Fh/n when Ga and 
Gf3- oo. In that case 

1'1 t•• 1 [t ft'« G« fat (1 + G~ f~~) + fr~ G~ f~1 (1 +Ga. f«a.)- ft•"" G« fa.B Gil ffJt 
Fmn = '¢mo(O) 'llno(O) t•z- (1 +faa. G,) (1 + f~~ a,)- Ga. ta.13 0 13 f~a. 

ft'l3 0~ !13« Ga. fat J 

I' I t·· l r f F mn = 'llmo (0) '\jlno (0) /'I-
fl'a. f""t !1313 + ft·fl f131 f""a.-fl'« Faa fl3t-fl'~ faa.fa.t ]· 

faa f~~-fa.a faa 
(25) 

From this formula it is at once clear that if 
either l or l' is equal to a or {3, the correspond
ing amplitude tends to zero. If, however, l ¢a, (3; 

l' ¢ a, {3 the amplitude differs from zero. This 
result has a general character and can be formu
lated as follows: If z<1>, z<2>, .•. are the numbers 
of the groups of electrons which possess for a 
given H a state with Vz = 0, then Ffuh = 0 if 
either l or l' is equal to z<t>, z< 2>, ... , and Fh/n 

is different from zero if l ¢ z<t>, z< 2>, .•. ' l' ¢ z<1>, 
z<2 >, .•. 

3. GALVANOMAGNETIC PHENOMENA 

We turn to a direct investigation of the depend
ence of the electrical conductivity on the magnetic 
field. We shall in the following be interested only 
in the case where the period of revolution of the 
electron in the magnetic field is appreciably less 
than the time of mean free flight, i.e., where the 
relation 1/ wT « 1 is satisfied. Since the scatter
ing is elastic the total current of the system of 
electrons is simply the sum of the currents caused 
by the different electrons. It is also necessary to 
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take into account the fact that the scattering is by 
a random distribution of impurities the average 
distance between which is larger than the electron 
wave length and the scattering amplitude. The 
waves scattered by different impurities do there
fore not interfere with one another. 

It is well known that the conductivity u in a 
magnetic field is a tensor quantity whose compo
nents <Tik satisfy the symmetry relations8 <Tik (H) 
= <Tki (- H). It is convenient to write <Tik as a sum 
of two terms 

Cltk = Stk + aik , 
Stk (H) =ski (H), a," (H) =- ak; (H). 

When we change over from the components of 
the conductivity tensor to the components of the 
resistivity tensor, we must take it into account 
that in pure metals with a quadratic dispersion 
law the condition that there be as many electrons 
as holes must be satisfied. Applied to a real 
metal this means that axy though different from 
zero is appreciably less than sxy in spite of the 
fact that the first one is proportional to H-1 and 
the second one to H-2• Account of this leads to the 
following equations expressing the resistivity 
tensor in terms of the conductivity tensor 

oii/ = Ptk + btk, Ptk (H) = Pkt (H), 

btk (H) = - bkt (H). 

If we now introduce a vector a which is the 
dual of the tensor aik and a vector b which is 
dual to bik we get for the most important compo
nents of the tensor aik 8 

Pxx = I 0 rl (a~+ Syy Szz ), Pxu = I 0 rl (ax ay- Sxy Szz ), 

Puu =I 0 l-1 (u! + Sxx Szz ), Pzz = I 0 r1 (Sxx Syu - S~y) (26) 

for the symmetric part and 

bx = -I 0 l-1 (ax Sxx + ay Sxy), bv-= -I 0 j-1 (ax Sxy + aySyy), 

bz = -I 0 l-1 (ax Sxz + ay Syz + az Szz) (27) 

for the antisymmetric part of the resistivity tensor. 
Here I a I is the determinant of the tensor <Tik= 

,, ( 2) _~'V 
1 Ci , = Sxx Syy- Sxy Szz ,- LJ aa ail Safl (a,~ =x, y). 

"· fl 

We must find the tensor Sik and the vector a. 
The simplest to find are the components ax and 
ay, and we now proceed to evaluate these. 

In the approximation considered ( 1/ wT « 1) 
these components are independent of T and can 
thus be found using the classical equations of 
motion for an electron when there are no impuri-
ties 

i; = eE + e[vx H]. 

We take the magnetic field strength vector H in 
the direction of the z axis and the electrical field 
strength vector in the direction of the x axis. 

Then 

dpx H 
iit=eE +evu , 

dpy 
dt = -- evxH, 

Using these equations for quantities averaged over 
a period of the motion in the magnetic field, we get 

Vy=-EfH, Pz =canst. 

From the relation E = ~ 11 ikPiPk we get Pi 
= mikvk. 

(28) 

It is clear that the average drift velocity along 
the z axis is independent of pz when the disper
sion law is quadratic. For pz = 0 we have thus 

or, if we take (2 8) into account 

For the components ai we get, however, at once 

(29) 

The summation over l is here over all ellipsoids 
and for the groups corresponding to electrons nz 
> 0 and for holes nz < 0. In practice only the 
components ax and ay are different from zero since 

az = (E/H) (n,- nt) = 0 

in the approximation considered. 
We find now the symmetric part Sik (except 

the component Szz ). We use the Einstein relation 
according to which the current along the x axis 
( H is parallel to the z axis and E parallel to the 
x axis) is connected with the mean square dis
placement of the center of the electron orbit per 
unit time due to collisions: 

(~x)2 = 2D, (30) 

where D is the diffusion coefficient. Then 

• 2 \ afn ~ dnl 
]x =- e E ~de aP. LJ D1 (e) de. 

I 

(31) 

Here f0 is•the electron Fermi distribution function 

fo={I +exp (e ;;~)r 

( l; has clearly different values for the electrons 
and the holes) dnz/dE is the density of states with 
the given energy which is well known to be equal to 

dn1 = W/ m11 '!, 'V 

de V 2 n' ~ V:;re=· -=w=t7(M~+=;=1 ""'•) (32) 

in a magnetic field. 
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The problem of evaluating sxx = h/E is re
duced to calculating the average value ( t.x )2• 

It is clear that 

((L\x)2) = ( L (Xm- Xn)2 2n I Fl,;,~ 12 6 (Em- En)). 
l',m 

The symbol < ... > indicates averaging over all 
initial states n with energy €; xn and xm are the 
centers of the electron orbits in the initial and 
final states. 

If we now take it into account that according to 
the results obtained in Sec. 2 

then 

((L\x)2> = 4:Jt).} x! I 'ljJ;;, (0) 126 (Em- e) i f1•1 12 Nimp 
l.'m 

- y2 ,, I I' "• I' .... , M +If, 2:JtN· f' 2 
- n' .:...J m I !lxx LJ v c - w .(M +' ) lmp I II I . 

I' M I 12 (33) 

We used Eq. (3) in deriving (33). 
Substituting the expression obtained for < ( t.x )2> 

into (31) we get finally* 

s = - V2 et Nimp \ de a to ,, I ml' I''• ,I' If . 12 dn, 
XX 1l _l ae LJ rxx I l de 

1', l 

X~ M+ 1/s 
M v 8 - rol' (M + 111) 

(34) 

Expressions for the other components of Sik 
(except Szz ) are obtained from Eq. (34) by sub
stituting there 1-Lik for 1-Lxx· 

We consider now the component Szz. To 
evaluate this we can use a transport equation 
which in this special case has a very simple form 
(we write the distribution function f as f = fo + f1 ) 

e'n (' aro d ~ {N '\"1 f I • 
Szz = - ,r,- j ae e LJ n, imp .::..1 i'l /2 mzz ffit• I m1 I''• 

r 2 t t' 

(36) 

It is clear from the equations obtained for O'ik 
that a, ay ~ Ir1; az ~ H-3; Sik ( i .,. z, k .,. z) 
~ H-2; Szz ~ 1. As far as aik is concerned, the 
components a(i{3 ( a, {3 = x, y) and Pzz are the 
most important ones. 

It follows from (25) and (26) that 

so that we shall only be interested in the following 
in Pa{3 and Pzz. 

We start our investigation of the conductivity 
with the semi-classical region where the relation 
w/t, « 1 is satisfied. We can then represent the 
sums over the magnetic quantum number occur
ring within the braces in Eqs. (34) and (36), with 
sufficient accuracy, as follows 

~ 1 ~ 2 e'/, + _1_ 
M V s- w (M + I 12) ~ ----w- y;i ' 

'\"1 M + 1/2 ~ 4 e'/, _s_ 
LJ ,r ) ~ -3 -2 + ,r- • 
M r c- w tM + 1;z w ro r t:.. 

(37) 

where D. is defined as before by the equation 

e = ro (N + 1/ 2) + L\, L\ ~ ro. 

In (37), D.> 0. 
For the range of values of the magnetic field 

considered it is convenient to introduce quantities 

l' l 
Saf3 ( cl) defined by means of the relations 

~ l'l 
Sa(3 (cl) = LJ Sa.r; (cl)· 

l', l - eE p: :~0 + ~ 2:Jt IF~~ 12 a:..- f~) 6 (Em- En)= 0. 
mzz n t', m (35) Then 

It is clear from (35) that f1 ~ Pz so that the 
term with fk drops out as fk is an odd function 

of pz while [ Fh/n 12 is an even one. Taking this 

into account we get 

f~ ~ 2:Jt I 'ljJI,;, (0) 12 1 'lJ~ (0) /2 1 ft•t 12 16 (Em- En) 
1', m 

=-eE !2~ 
t a£ 
zz n 

Summing over all m and l' and averaging over 
the position of the center of the electron orbit in 
the initial state we find 

*A similar equation for Sxx was obtained by B. Davydov 
and I.Pomeranchuk.4 

t'l N 4e2 I l'j l' ~2 I ( 8 Sail (d) = imp 311' m flail2 2:Jt I ft•t 2. 3 ) 
WI' 

If we use the results obtained we shall get for 

Sa(3 and Szz 

e2n 
Szz = - 2'/, N . 

1mp 

(' aro '\., {"'.,I 12 I t'l'/• ( rot' )}-1 X) ae·- de f n1 f f rt fflzz m ~ 1 + 2~•;, V t.t' 
(39) 

It is necessary to emphasize here that the fl'l are 
different from zero only when the indices l' and l 
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refer either only to electron or only to hole states, 
i.e., when the electrons do not go over into holes, 
or vice versa, in the scattering by the impurity. 

The terms containing ~ -1,12 in the expressions 
which we have written down describe the usual 
semi-classical oscillations of the conductivity in a 
magnetic field. 

If we substitute the quantities sa.f3 and Szz 
which we have found into (26) we obtain the final 
equations for the Pik· These formulae are very 
cumbersome, for when the magnetic field has an 
arbitrary orientation with respect to the crystallo
graphic directions, all the electron groups connect
ed with the various ellipsoids will give contribu
tions of the same order. We note that the formulae 
for the conductivity for the case when the magnetic 
field is perpendicular to the three-fold axis of bis
muth were investigated in detail by I. Pomeranchuk 
and B. Davydov.4 We shall therefore in the follow
ing investigate Pa.{3 and Pzz only in the region 
where their behavior is anomalous. 

1. By changing the magnitude of the magnetic 
field we can get ~ « w2t-1 for one or several 
electron groups. fu practice this can apparently 
only be obtained for electrons corresponding to 
some given ellipsoids, which we denote by l0• 

When we change over to the resistivity tensor we 
note that for sufficiently small ~lo 

Pxx = Syy (sxxSyy- s~vf\ 

Pzz = s-;/. (40) 

As far as Szz is concerned in terms of which pzz 
in (40) is expressed, if the group lo refers to 
electrons, only the term corresponding to holes 
remains in Eq. (39) for Szz. 

If ~lo is so small that we can retain in (39) just 
the term with ~. then 

where 

a= I ft,t,l2rot I mt•l / 8n2 • 

It is clear from Eq. (42) that Pa.{3 ~ ~lo• i.e., 
that Pa.(3 is appreciably decreased when ~lo is 
sufficiently small. The steep decrease of Pa.{3 
which we have obtained when ~lo- 0 can in 
practice be observed only when the following con
ditions are satisfied: 

and when the magnetic field is stabilized ~H/H 
« w~0t-2 • We note that this effect takes place not 
only in the semi-classical region but everywhere, 
so long as t = w ( N + Y2) + ~ and ~- 0. 

When the field is sufficiently strong t is not 
equal to its value when there is no field and must 
be determined from two conditions: the fact that 
the number of electrons must be equal to the 
number of holes ne = nh, and the condition that 
tt + t2 =Eo where tt- te, t2- th and E0 is a 
constant which is independent of H0• 

2. The expressions for Pa.{3 and Pzz which we 
wrote down in the foregoing are valid for suffi
ciently small, but not too small values of ~lo· If 
~lo is very small it is essential to take into ac
count the dependence of the scattering amplitude 
yl' l on the magnetic field H. For the sake of sim
plicity we restrict ourselves to the case T = 0. 
We note now immediately that it is apparently 
practically impossible to observe the anomaly in 
the resistivity near the resonance for scattering 
by impurities with an attractive potential because 
of the too stringent limitations as to the purity of 
the metal and the temperature. We shall therefore 
not investigate Pik near this resonance. 

When ~lo- 0 

(41) s = n-3e2N. I mt·l llz' If 12,. «fl 1DIP[ «fl l,l, 'o 

(42) 

One obtains similar expressions for Pxy and Pyy· 

J a£0 d€ 1 
If T = 0 we have --=- When 

8€ ~lo ~lo ( t). 

T « w2t-1 (but T ¢ 0) we must take into account 

the behavior of I F~n 12 as ~lo- 0 when 

integrating. This leads to the following integral 

cato ~= -[-1-+ afo(-t:..l,(~))l ] 
) ae t:..t, +a t:..t,<~) a~ na, 

x[ f:..z, + f 'Jt-21 fz,z,12 rot\ mlo! r 
and we have, for instance, for Pxx 

nsfJ.l, If 12ro2 I ml'l 
_ yy [f:.. + l,l, I, ] 

Pxx- e2N. ,1 f [2 ml• .,. l, 8n2 • 
1mp l,l, zz"' 

(43) 

It is clear from this formula that as D..z0 - 0, Pa. {3 
tends to some very small though finite limit. 

We investigate now the behavior of Pzz for very 
small ~lo· As before we have then Pzz = szk· If 
we take the results of Sec. 2 into account we are 
led to the conclusion that for ~lo = 0 all amplitudes 
for which either l' or l is equal to lo tend to zero 
and that there remain only terms with l ;t!. lo and 
l' ¢ lo. At the same time these amplitudes Fl' l 
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are changed according to the results of Sec. 2. 
Finally, Szz is given by Eq. (36) where l' ;r lo and 
z ¢ lo and where we have instead of I fz' zl 2 

I fl'l- fl't.ft,z/ft,t,l 2• 

This result can be summarized as follows: for 
some values of H the group lo does not make any 
contribution to the conductivity Szz. Up to now we 
considered the case where t:..z0 tended to zero 
from the positive side. However, the opposite case 
is, of course, also possible. The equation for Szz 
is then not changed. sa{3 will be given by Eq. (34) 
with l !"! lo and l! ;r lo if in that equation we 
replace 

fl't by ft•t- fnft,t I ft,t,· 

The transition from the Sik to the Pik is then 
performed by means of Eqs. (26). 

The final results about the behavior of the 
tensor Pi.k near t:..z0 = 0 can be summarized as 
follows: when t:..z0 - 0, Pa{3 ,..., t:..z0 and tends to a 
finite though very small limit; in a narrow region 
near t:..z0 = 0 Pa{3 changes quickly and the limits of 
Pa{3 when t:..z0 - + 11 and when t:..z0 - - 0 are 
essentially different from one another. 

In conclusion I express my gratitude to 
Academician L. D. Landau and to I. M. Khalatnikov 

for valuable discussions when this research was 
done. 
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