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We consider the correlation between the direction of emission of internal-conversion electrons 
and positrons and the direction of emission of f3 electrons from the preceding f3 -decaying 
nucleus. The calculation is conducted for allowed f3 transitions without taking into account 
the Coulomb field of the nucleus (in the Born approximation) under some very general as­
sumptions regarding the f3 -interaction Hamiltonian. The expressions obtained refer to arbi­
trary 2j-pole electric and magnetic types of nuclear conversion transitions. The case of VA 
types of f3 coupling (with conservation of time parity) is considered as well as the case of 
f3 transitions involving a change by unity of the nuclear spin, ~I= ±1 (~T = ±1). A numeri­
cal computation is carried out on the polarization of internal conversion electrons emitted 
after f3 decay of the Na24 nucleus. 

PARITY nonconservation in f3 decay processes 
makes the nucleus obtained as a result of f3 decay 
polarized in the direction of emitted f3 electron. 
It is assumed that the initial nucleus is unpolarized 
and the direction of emission of the neutrino is not 
registered. Consequently, if the f3 decay is fol­
lowed by conversion with production of electron­
positron pairs, the pair particles should be polar­
ized in a definite manner. Let us consider the po­
larization of the internal-conversion electrons and 
positrons. 

Let It be the angular momentum of the parent 
nucleus, 12 and m2 the momentum and the projec­
tion of the momentum of the nucleus produced as a 
result of the f3 decay, with Is and ms the same for 
the final nucleus. 

We are thus considering a process comprised 
of the It - 12 ( f3 decay) transition followed by l2, 
m2 - Is, ms (internal conversion with pair produc­
tion). The f3 -decay stage of this process is de­
scribed by a density matrix that characterizes the 
polarization state of the nucleus due to the f3 decay. 

An expression for the density matrix was ob­
tained by Berestetskil and Rudik.t For an allowed 
f3 transition in the case of the S, T, A, and V var­
iants of the interaction without allowance for the 
Coulomb field of the nucleus, the matrix has the 
form 

where vJ1. are the spherical components of the 
f3 -electron velocity vector 

v0 = Vz, V±1 = =f (vx =f ivy)/ V2; 
C~~;do is the Clebsch-Gordan coefficient; ~ is a 
constant that determines the angular distribution 
of the f3 electrons when a polarized nucleus with 
momentum 12 and with an average momentum 
projection < I2z > decays to a state with mo­
mentum It: 

~ = 2 Re {(ere;+ c~c~- c Ac;- c~c~) U2 I (!2 

+ I)]'I•£\I,I,MFM;T +(eTc;- cAc~) I MaT 12 AI,I) {( ICs .12 

+ 1 c~ 12 + I Cv 12 + I c~ 12) I M F 12 + (\ cT i2 + i c~ 12 + I c A 12 

+ I c~ \2) I Mr.T 12}-1, (2) 

A1,~o = U2 (Is+ I)- /1(11 + I)+ 2] I 2/2 U2 + I), 

MF = (~ I). Mar = (~ o) . 
The probability of conversion with production of 

electron-positron pairs, for a nucleus which has 
previously experienced a f3 decay, is1 

"" (A) * ' (A) W= Li P ·(/2m2!QiMilama) (!2m2IQiM'ilama) 
, m2ms 

mzm,m 1 

MM' 

(A) (B(A) )• 
x(BJMb JM' 21· (3) 

Here (12m 2 I Q;~ I Isms) is the nuclear matrix ele­
ment of the conversion transition; Q}~ or the op­
erator of the 2j -pole electric (A = 1 ) are magnetic 
(A = 0) moments of the nucleus, corresponding to 
the given type of conversion transition; BJ~ is the 
operator of the interaction between the electron 
and positron of internal conversion with the field 
of the multi pole; 
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(B<'-l) \ *B(f,) d 
jM 21 = ~ 1Jl2 jM 1Jl1 f 

is the matrix element of this operator while lf;1, 

and lf;2 are the wave functions of the positron and 
electron respectively. 

The matrix element of the multipole moment of 
the nucleus can be represented in the form 

(I , Q(f.) I I )• Q<'lci,m, 2m2 I iM 1 ama = J,m,;iM• (4) 

where Q(A.) is independent of the quantum numbers 
m2, m3, and M. Substituting (4) in (3) and taking 
into account the properties of the Clebsch-Gordan 
coefficients 

~ 0 'ci,m, 0 c'·m; -- 2/z + 1._ 
~ m,m, J,m,;JM l,m,;jM'- 2j + 1 °MM" 

2} c'·m, 0 c'•m; C1'm: . 
, /3m3 ;J~'-f ltmz; 1!-L lam3; 1M' 

m2m2 m~ 

_ 2!2 + 1 j (j + 1) + ]z (/z + 1)- Is (/s + 1) CiM 
- 2j+1 2fj{j+1)/2(/z+1) jM';llM 

we transform the expression into 

W = ~ {6 , + j(j + 1) + /z(/2 + 1)-/s (/a+ 1) £'VC~M,_ v~'-} 
L.J MM 2/ ,,. (' + 1) LJ JM ,1'-' 

MM' 2 y I I I' 

(5) 

The wave functions of the internal-conversion 
electron and positron will be taken in the form of 
plane waves 

'ljl1 = v exp (ip+r), 'ljl2 = u exp (- ip_r), 

where P+ and p_ are the momenta of the positron 
and the electron, while v and u are unit Dirac 
bispinors for the positron and electron respectively. 
With these wave functions, the expression for the 
probability of pair conversion following {3 decay 
has the form (accurate to inessential multipliers ) 

"' A s ' (A) ' ---w w = Li MM' p {(ip_- m) viM (ip+ + m) VjM'}, 

where P± = p~·Yi; the form of the expressions 

vj~. vj~' = y4Vj~,+ y4 will be given below. 

The states of the polarization of the conversion 
electrons and positrons will be described with the 
aid of density matrices, which can be introduced 
in the usual manner. The normalized density 
matrix that determines the polarization of the con­
version electrons in this process has the form 

p - 1 {~A (·' )Vri.l(·' (-) - - 28_ W L.J MM' l{J_- m jM lp+ 

and analogously for positrons 

P<+) =- 2 
1w { :2i 4MM'(iP+ + m) V}~- (ip_ 

8 + MM' 

(~ ' } - m)ViM (ip+ + m) Y4 • (7) 

If we do not register the angle 8 between the 
momenta of the internal-conversion electron and 
positron, then the numerator and the denominator 
of the expressions (6) and (7) must be integrated 
with respect to (}. 

The electron (positron) polarization 4-vector 
ti-L = { (;; t 0} satisfies the condition t/-LPIJ = 0. 
Therefore, in a reference frame where the elec­
tron (positron) is at rest, we have p =0 and 
to = 0, i.e., t~ = { (;0 ; 0 }. 

Consequently, the polarization properties of the 
electron (positron) can be determined, as is 
customarily done, with the aid of the three-dimen­
sional vector (; 0, connected with t, 

~o= ;_~_ -i- me-l~ II, (8) 

where t1 and t11 are the transverse and longi­
tudinal components of the vector t, expressed in 
terms of the electron (positron) density matrix 
in the following manner: 

(9) 

Magnetic type of transition (A.= 0 ). The matrix 
element of the interaction operator of the internal­
conversion electron and positron with the multipole 
field has the form2 

(B}~)21= u*V)~v = qi (w2 - q2)- 1u*~YiiM(qjq) v, 

where q = P+ + p_ and w = E+ + E_ are the mo­
mentum and the energy of the conversion transi­
tion, a is the Dirac velocity matrix, and YjjM ( q/q) 
is a transverse spherical vector. 
___§_ubstituting the expressions for vjll and 
vJll' in (6), then (6) in (9), and then calculatingthe 
trace, summing over the magnetic quantum numbers 
M and M' (a method for summing similar expres­
sions is developed in papers by Berestetskil et 
al. 1•3 ), and integrating over the angle e, we obtain 
for the polarization vector of the internal-conver­
sion electron the expression 

~t l = No{rrt2WJ2i-2q(vq)++(e+- e_)(J2i- w2J2i-2)P- (vq)} 

X {e_ [(e+e_ + m2) J2i- f J 2i+2 -+ w2 (e+- e_)2 J•i- 2]}-1, 

Nu = £lj (j + 1) + I 2 (/d-- 1)- I a (/a+ 1)]/2I2j (j + 1). 
(10) 

The form of the expressions J 2j + k is given in 
the appendix. 

MM' 

+ m) v)~· (ip_- m) l4}' 
It is obvious that all the results obtained are 

(6) symmetrical under a substitution of the electrons 
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symbols ( - ) for the positron symbols ( +) and 
vice versa, inasmuch as the calculation did not 
account for the Coulomb field of the nucleus. 
Therefore the corresponding expression t~+ > for 
positrons can be obtained directly from (10), by 
making everywhere in (10) the interchange E+ 
~ E_, p+ ~ P-· 

Electric type transition (A. = 1 ) . In this case 
the matrix element of the operator Bjll has the 
form2 

- -,121 7 1 % Yj, i-1, M (qjq) oc} v, 

where YjM ( q/q) is the Laplace spherical function 
and Yj, j- 1, M(q/q) is a spherical vector. We 
use everywhere the system of mutually-orthogonal 
spherical vectors described in detail in reference 
2. 

After performing the same operations with 
vjll as in the case of magnetic transition, we ob­
tain for the polarization vector of the internal­
conversion electron 

~?_, =N1 :{m2J2i(v-n(vn))- ;_ J2iP-(v(p+-p_)) 

mSw2 mw (e+- e_) ( 2J - -.-J2i_2n(vn) + 2 . w 2i-4 
J8- JE-

+ (2j -1) J2i-2) p_(vq)} X{+ J2i+2--} J2i[ w2 5i ~ 1 

+ (e+- eJ2] + w 2J2i _ 2 x ( ~2 + 2e+e- + 2m2+(e_- e)2) 

j- 1 2 )2J j-1 +41 w (e+-e- 2i-4J , (11) 

where N1 = N0 ( j + 1 ) and n = q/q is a unit vector 
in the direction of the total momentum of the pair, 
By corresponding substitution, we can obtain 
directly from (11) an expression for the polariza­
tion vector of the positron t~+>· 

In the case of the V-A variants of the {3 
interaction (with conservation of time parity) the 
constant L which enters into the expression of the 
density matrix Pm1m2• assumes the following 
form. 

£ = {d I Mari2 AI,I,- 2cvcA [/2/ (/2 + 1)]'1'6I.J,MFM~r} 
X {c~ I M~ 12 + c~ I Marl2}-1 • 

In the case of a Gamow-Teller transition 
where the spin (or isotopic spin) changes by 
unity, 6..I = ±1 (6..T = ±1 ), this constant is inde­
pendent of the nuclear matrix elements and of the 
constants of the {3 interaction 

£=AI,I,=[l2(l2+ 1)-/I(fr+ 1)+2)/2/2(/2+ 1), 

and depends only on the spins of the initial and 
final states of the nucleus ( I1 and I2 ) . 

The expression (11) obtained in the present 
paper for t~-> has been used for a numerical cal­
culation of the polarization of the internal-conver­
sion electrons that follow the {3 decay of the nu­
cleus Na24 [4+ ({3-)4+ (E2)2+ (E2)0+]. The tran­
sition 4+ ( {3-) 4+ is a Gamow-Teller transition in 
the isotopic spin. 4 Since, disregarding the 
Coulomb field of the nucleus, emission of conver­
sion electrons and positrons with equal momenta 
is the most probable, we assume in the calculations 
E+ = E_ = w/2 [for the conversion transition 4+ 
- 2+ (E2) ]. 

The calculation for the polarization of the pair­
conversion electrons yielded in this transition 

tt > = 10-2 {3 (n13- n (n13n))- 0,7 (nlln) n}. 

It is clear therefore that in the conversion transi­
tion considered here the transverse polarization 
is one order of magnitude greater than the longi­
tudinal polarization. 

It must be noted that an account of the Coulomb 
field of the nucleus is apparently inessential in the 
conversion parts of the calculations, since the in­
ternal conversion is the most effective for nuclei 
with small charge Z, for which the Born approxi­
mation gives good results. On the other hand, 
the Coulomb field of the nucleus, for the {3 -decay 
stage of the considered process, can be readily 
accounted for by using the density matrix Pm2m2• 
obtained by Geshkenbe1n. 5 

The author is deeply grateful to I. S. Shapiro 
for suggesting the topic and for constant interest 
in the work. 

APPENDIX 

The quantities J 2j + k (k = 0, ±2, -4) which 
arise upon integration over the angle of emission 
of the pair, are determined in the following manner 

1 {( + )2 (/-2) ( 2 ) = 4 (j- 2) p+ p_ m - P+P-- e+e-

- (p+- P.l <i-2) (m2 + P+P-- e+e_) 

(j =I= 2). (A1) 

When j = 2, we obtain by direct integration 

(A2) 

Analogously, 
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1 ( )2 <i-'-1) ( 2 ) 
=4(j-1) { P++p_ m -p+p--8+8-

- (p+- pj <i-1> {m2 + P+P-- 8+8_) + 4w2jJ2i-2}(j =/=I); 
(A3) 

when j = 1 we have the already obtained expres­
sion (A2). 
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