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The relaxation of the magnetic moment of a ferromagnetic material is considered. It is 
shown that because of sd-exchange interaction between spin waves and conduction electrons, 
there is first established a quasi-equilibrium distribution of spin waves and conduction elec
trons with a definite nonequilibrium value of the projection of the magnetic moment along the 
axis of easiest magnetization. Then because of weak relativistic spin-orbit interaction, 
there is gradually established an equilibrium value of this quantity. The relaxation time of 
the projection of the magnetic moment along the axis of easiest magnetization is independ
ent of temperature and of order of magnitude 10-8 to 10-9 sec. 

1. Kinetic and relaxation phenomena in ferro
magnetic materials are determined by various 
processes of interaction of spin waves with con
duction electrons and with one another. In the 

action of the magnetic moment M (r, t) of the d 
electrons with the conduction-electron current 
j (r, t). 

The Hamiltonian ;;e 1 has the form 
temperature range Jf1= 1.1. ~ cp+ (r, t) a cp (r, t) H<e> (r, t)dr. (1) 

Elc~ T ~ 48c(Jajnvo? 

(®c is a quantity of the order of magnitude of the 
Curie temperature, J is the sd-exchange inte
gral, a is the lattice constant, and v o· is the 
limiting Fermi velocity), the strongest interac
tion is the sd-exchange interaction of spin waves 
and conduction electrons; because of it, there is 
established a quasi-equilibrium distribution of 
conduction electrons and spin waves, correspond
ing to a definite value of the magnetic moment of 
the body. 

The transition to the equilibrium value of the 
magnetic moment is caused by a relativistic spin
orbit interaction of spin waves and conduction 
electrons. This interaction is weak in compari
son with the sd-exchange interaction, and there
fore the relaxation of the magnetic moment pro
ceeds slowly in comparison with the process of 
establishment of the quasi-equilibrium distribu
tion functions. 

2. We shall use a model of a ferromagnet 
that starts with the concept of two groups of 
electrons -the conduction electrons ( s elec
trons) and the ferromagnetic d electrons.1 The 
s and d electron interaction energy operator is 
the sum of a Hamiltonian ;;e 1, which describes the 
exchange interaction between s and d electrons, 
and a Hamiltonian ;;e2, which describes the inter-

where J1. is the Bohr magneton, a is the spin op
erator of a conduction electron, cp+ and cp are the 
creation and absorption operators of a conduction 
electron, and H <e> is the exchange magnetic field, 
equal to 

H<e>(r, t) = ~J(r-r')M(r', t)dr'. 

The Hamiltonian ;;e2 has the form 

X2= ~ M (r, t) H (r, t) dr, (2) 

where H (r, t) is the magnetic field produced by 
the conduction-electron current: 2 

H ( t)- _!_\ (j(r', t), r-r'] -qr-r'ld' 
r' - c .l I r- r' I" e r ' 

_ (4rr.ne2\'f, 
q- . mc2 ) 

(q- 1 is the shielding radius; e, m, and n are re
spectively the charge, mass, and density of the 
electrons; c is the speed of light). 

The current operator j is connected with cp+ 
and cp by the relation 

j = (ienf2m) {cpv cp+- (vcp) cp+}. 

The operators cp+ and cp can be expanded as 
series of Bloch wave functions uk (r) eik.r: 

cpa(r) = ;V ~CkaUk(r)eikr, cp! (r) = ;V ~c~au~(r)e-tkr, 
k k 
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where cka and cka are the creation and annihi
lation operators of an electron with wave vector 
k and spin projection a. 

On further expressing M (r, t) in terms of the 
creation and annihilation operators a"f. af of the 
spin waves, we finally express the Hamiltonian of 

·the ferromagnet in the form 

:1f = :Jeo+ :1f lint+ :Jf2int-; 

:1fo = ~ EkaC:0Cka +~Brat ar, 
k,a f 

"liJ (4f.1Mo)'/z "' J A + + 
Ql, 1 int = 11 -v- LJ r kk' {a1 ck._ck+ 

k,k',f 
+ a_1c~·/d ~ (k'-k+f), 

:Jf2 int = nie (4~-'Mo)'/, ~ Akk'r2 (1 - !L tan-1 L) 
C V k,k',f,a f q 

X CkaC~ .• {a: f x [vk+ vk']-

Here Ef = ®c (af)2 + Eo is the energy of a spin 
wave; Eka = Ek + 2~-tM0J0a is the energy of an 
electron with wave vector k and spin projection 
a (a= ±1/2 ); vk =li-t aEk/ ak is the velocity of 
the conduction electrons; A!. = Ax± iAy; 

(3) 

(4) 

(5) 

(6) 

Akk'=~~ u~Uk•dr, h=~J(r)e'frdr, ~(k)= {1• k=O 
n 0, k=f=O 

(7) 

(Q is the volume of the elementary cell). 
The operator :1ft int describes the creation and 

annihilation of a spin wave with change of the pro
jection of the electron spin ( sd-exchange interac
tion), and the operator :1t 2 int describes the crea
tion and annihilation of a spin wave without change 
of the projection of the electron spin. 

3. The change in unit time of the number of 
spin waves with wave vector f, caused by the ad
exchange interaction :Jet int and the spin-orbit in
teraction :Je2 int. is determined by the formulas 

• col 
n, = n1 = $ 1 {n, N}, 

2r {n, N} = :tj•> {n, N} + 21'> {n, lV}, (8) 

where the collision integrals :t<;> and :t<[>, con
nected respectively with the Hamiltonians :Je1 int 
and :Jt.2 int• are equal to 

2~el{n, N} = 2: 4~-'~o ~ \ ltAk'k \2 {(nr+ I) Nk+ (I-Nk' ) 
k,k' 

- n,Nk'- (I-Nk+)}~ (k'- k +f) 6 (e1- Ek. + Ek' ). 
- (9) 

2(r) {n N} = 2n;n;2e24!!Mo "' [Akk' \2(1- .!Ltan-11_)2 
f ' 1i cz V kf f2 f q 

k, k ,a 

X \f~[vk+ vk')+ )2 {(nd- 1)(1- Nk•a)Nko- nt(l 

- Nko) Nk·o} !i (k- k'- f) b (e,+ Ek- Ek)· (10) 

Here nf and Nka are the distribution functions of 
the spin waves and of the electrons, respectively. 

The change in unit time of the number of elec
trons in the state k, a is determined by the fol
lowing kinetic equation: 

Nko =(Nko)col:== L~~ {n, N} + Ll;] {n, N}, (11) 

where the collision integrals Lft~ and Lft~ are 
connected with the Hamiltonians :Jt1 int and :Jf2 int 
and are equal to 
L CeJ N 8nf.1"Mo '\1 

k+ {n, } = fiV "--I ltAkk·\2 {nr (I-Nk+) Nk'_ 
f,k' 

- (nr+ 1)(1 -Nk·_) Nk+} ~ (k'- k +f) 6(Ek·--Ek++ er), 

L (r) { N} = 8n;2e2 f.!Mo '\1 I Akk'l2 (1 - !I_ t -1l_)2 
k+ n, hcz V ft. T f an q 

X Jfxl [vk+ vk']+ \2 {[(nt+ 1)(1 - Nk+) Nk+' 

-nr Nk+(I-Nk'+)l ~ (k- k' +f) 

X 6 (£~.- E~- er) -[(nr + I)Nk+ (I-Nk'+) 

(12) 

- n, (I-Nk+) Nk'+] ~ (k- k'- f) 6 (£~,- E~ + e1)}. 

(13) 

The collision operators Lk~ and L[~ have a 
similar form. 

By use of the expressions for the collision op
erators, one can find the mean rate for the various 
processes of collision of spin waves with electrons. 
This rate is determined in accordance with the 
formula 

(14) 

where ( o2/ on )0 is the variational derivative of 
the collision integral with respect to the distribu
tion function, evaluated at the equilibrium values 
of the distribution functions of the spin waves, n£, 
and of the electrons Nka" 

By use of the expression (9) for :t!e> and of 
formula (14), one can calculate the mean rate of 
emission or absorption of a spin wave by an elec
tron, as a result of exchange interaction: 

_1_ - (ako)z ~ (_I_)'!•'¥ (e-e,tT) (15) 
't~e) - n;'l•'(,("lz) 1i ec ' 

where T is the- temperature; e0 = 4Bc (J/E*) 2; 

E* = hv0/a; v0 and liko are the limiting Fermi 
velocity and momentum of an electron; and 

X/(1-X) 

'l'(x)=!ln(l-x)ln~+ I ln(1 +t)dt. 
2 1-x J t 

The expression for 1/:r~e> simplifies consider
al,ly in the limiting cases of high and low tempera
tures: 
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1 ~ Vn 6 0 ( T )'/, 
-r~e> ~ 6Ua/z) (ako)2 T ec for ec~ T ~eo, 

_1_ ~ {ak0) 2 8o ( 8o )'!'( 8o )'/, _ 9 r 
't~e> ~ n·;,~ (3/z) T ec \ r e .; for eo~ T. (16) 

We note that for T = ®0, both limiting expres
sions in formula (16) have the same order of 
magnitude. 

In a similar way one can calculate the mean 
rate of emission or absorption of a spin wave by 
an electron, as a result of the relativistic inter
action :JC2 int: 

1 512 Vn ec ( 6c )''• 2 (1LM0ma2 ) 2 _ 1 
't(r) ~3~ (s/z) T T (ako) _n_z_ lnyo ' 

s 

Yo= (ecfT)'I•aq (ec~ T ~ ec (aq)2). (17) 

On putting ®0 =cl03 °K, ako ~ 1, a ~ 10-8 em, 
m ~ 10-27 g, and T ~ ®0 ~ 10°K, we get T~e> 
!':ll0-11 sec T< 2> "" 10-8 sec· that is T<e> « T<r> 

' s ' ' s s 
for T ~ ®0 "" l0°K. This means that in the 
temperature range T :;::, ®0, the inequality 
~<e> » :t,<r> holds. 

The mean rate of scattering of electrons by a 
spin wave, as a result of exchange interaction, 
can be calculated by use of the expression (12) 
for L~e>. We give here the final answer for 
1/T~e> in the limiting cases of low and high tem
peratures:3 

1 3 E* ( T )2 --=--- - e-e,;r for r~ e 
't'(e) 8n k e ~ 0• 

e c 

~ = sn Tee In e- 1 for ec~T ~e0 • (18) 1 3 E* 8 0 T ( T ) 
Te c c c 

By use of the expression (13) for L<r>, one can 
calculate the mean rate of scattering of an elec
tron by a spin wave, as a result of the relativistic 
interaction :JC2 int: 

Y ~ ILMo (e2k0)( 1 )2 T 
't(r) ~ ---yj mc2 aq e . 

e c 
(19) 

By comparison of the expressions (18) and (19), it 
is easily verified that in the temperature range 
T :;::, ®0, the inequality T<e> « T<r> holds. 

e e 
4. Thus, in the temperature range T :;::, ®0, the 

strongest interaction is the exchange. Consequently, 
in determining the quasistationary distribution 
functions n and N one can start from the equa-

• tions4 

:t.Y> {n, N} =0. (20) 

It is easily seen that the general solution of these 
equations has the form 

[ ( e1 r) J-1 [ (Ek -~ ) J-1 n1= exp ----;y- - 1 , Nk± = exp _± T ± +I , 

(21) 
where /;+ = y + /;_ • 

By use of the conservation law for the number of 
electrons, 

~ N ko = const, 
ko 

we get 

The arbitrary y can be related to the size of 
the projection of the magnetic moment along the 
axis of easiest magnetization (the z axis): 

gnz=- fl.~ q>+azq>dr + ~ Mzdr 

= MoV- 2ft~ n, + fl.~(Nk-- Nk+ ). (22) 
I k 

The possibility of the existence of solutions of 
equations (20) with an arbitrary value of the 
chemical potential y is connected with the fact 
that the magnetic moment of the body commutes 
with the exchange-interaction Hamiltonian :JC1 int· 
We note that in formula (22) we have not in
cluded the contribution of the orbital magnetic 
moment of the s electrons; this is permissible 
if the length of the free path of the electrons is 
much smaller than the Larmor radius in a field 
Mo. 

We now take into consideration the relativistic 
interaction ::Jt2 int· Then the distribution (21), 
since it satisfies (20), will no longer satisfy the 
equations 

:t,<e>{n, N} + :t,<r>{n, N} = 0, L(e){n, N} + L(r){n, N} = 0. 

Since, however, L<e> » L<r> and :t<e> » :t,<r>, 
the distribution (21) with a slowly varying para
meter y can satisfy approximately the kinetic 
equations 

Since the size of the projection of the magnetic 
moment, gnz• is determined by the occupancy num
bers of the spin waves and of the electrons, it is 
possible, by use of the kinetic equations (8) and 
(11) and of the quasi-equilibrium distribution 
functions (21), to determine the change of mag
netic moment with time caused by the relativistic 
spin-orbit interaction. On differentiating equation 
(22) for gnz with respect to time, we get 

• lDlz IL { k~ -nT 1 } · 
Mz== v = - 2n2 "fiV; + zasec Veo6c r 

= ~ ~ {(Nk_)col-(Nk+)ool} _ -¥ ~ n~t 
k I 

Since the relativistic interaction :JC2 int does not 
change the number of electrons with a given spin 
projection, 
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By using the expression (10) for ::tft>, one 
easily gets the following equation for the change 
of the quantity y with time: 

r =- r/t, (23) 

.!_;:::;:: 8 (112- 8) (v0k0) 2 .!!__ ( 8 o8c )''• !LMo (24) 
t 3 ·137 cq v0 £*2 1i • 

The change of the projection of the magnetic 
moment, gnz, with time is determined by the 
formula 

(gnz_ mlz) = (gnzo- IDlz) e-tt~' (25) 

where gnz is the equilibrium value of the mag
netic moment at the given temperature. On set
ting v0 ~ 108 em/sec, Eo ~ 1 °K, n ~ 1022 cm-3, 

M0 ~ 103 gauss, a ~10-8 em, and ®c ~ 103°K, we 
get 1/T ~ 108 to 109 sec-1• We emphasize that 

the relaxation time of the magnetic moment is 
independent of temperature. 

The authors express their gratitude to A. I. 
Akhiezer for proposing the problem and for val
uable discussions, and to M. I. Kaganov for dis
cussions of the work. 
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