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The relaxation of the magnetic moment of a ferromagnetic material is considered. It is
shown that because of sd-exchange interaction between spin waves and conduction electrons,
there is first established a quasi-equilibrium distribution of spin waves and conduction elec-
trons with a definite nonequilibrium value of the projection of the magnetic moment along the
axis of easiest magnetization. Then because of weak relativistic spin-orbit interaction,
there is gradually established an equilibrium value of this quantity. The relaxation time of
the projection of the magnetic moment along the axis of easiest magnetization is independ-

ent of temperature and of order of magnitude 1078 t0 107? sec.

].. Kinetic and relaxation phenomena in ferro-
magnetic materials are determined by various
processes of interaction of spin waves with con-
duction electrons and with one another. In the
temperature range

0.> T > 46, (Ja /vy

(G¢ is a quantity of the order of magnitude of the
Curie temperature, J is the sd-exchange inte-
gral, a is the lattice constant, and v is the
limiting Fermi velocity), the strongest interac-
tion is the sd-exchange interaction of spin waves
and conduction electrons; because of it, there is
established a quasi-equilibrium distribution of
conduction electrons and spin waves, correspond-
ing to a definite value of the magnetic moment of
the body.

The transition to the equilibrium value of the
magnetic moment is caused by a relativistic spin-
orbit interaction of spin waves and conduction
electrons. This interaction is weak in compari-
son with the sd-exchange interaction, and there-
fore the relaxation of the magnetic moment pro-
ceeds slowly in comparison with the process of
establishment of the quasi-equilibrium distribu-
tion functions.

2. We shall use a model of a ferromagnet
that starts with the concept of two groups of
electrons —the conduction electrons (s elec-
trons) and the ferromagnetic d electrons.! The
s and d electron interaction energy operator is
the sum of a Hamiltonian 4, which describes the
exchange interaction between s and d electrons,
and a Hamiltonian #,, which describes the inter-

action of the magnetic moment M(r, t) of the d
electrons with the conduction-electron current
J(x, t).

The Hamiltonian #; has the form
Hor=p o (r, Daq(r, ) HO (r, Hdr. @

where p is the Bohr magneton, ¢ is the spin op-

erator of a conduction electron, q0+ and ¢ are the
creation and absorption operators of a conduction

electron, and H(®) is the exchange magnetic field,
equal to

HO (r, 1) = {J (r — )M (", ) dr'.
The Hamiltonian #, has the form
Ho— \M(r, ) H (r, 1) dr, @)

where H (r, t) is the magnetic field produced by
the conduction-electron current:?
4nine\'/:
9= ( mc? }

(q'1 is the shielding radius; e, m, and n are re-
spectively the charge, mass, and density of the
electrons; c is the speed of light).

The current operator j is connected with ¢*
and ¢ by the relation

j = (ieh/2m) {ov 9" — (V) @*}.

The operators ¢* and ¢ can be expanded as
series of Bloch wave functions uy (r) elk.r,

. 1 . ;
@ (r) = ‘/117 zck"uk (r)etkr, @ (r) = 8% ZCZauk(r) e=kr,
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where ci‘{ and Cpy 2re the creation and annihi-
lation operators of an electron with wave vector
k and spin projection o.

On further expressing M (r, t) in terms of the
creation and annihilation operators a}, a, of the
spin waves, we finally express the Hamiltonian of

sthe ferromagnet in the form

H = FHot+ H yunt + Haints 3)
Ho= D) ExaC}Cxa -+ 2 eway ay, 4)
k,o f
‘%,1 int =W (#4—“)% Z JiAgy: {a;‘ C:,_Ck+
k,k’,f
-+ a_,c;,fk_} A (k'—k 1), )
o e (ApMo)\: F2(1 — 3 tant L
Hzint c ( v ) k'gf’al\kkf (l ; tan q)
X Ckcc;'_, {a: fx lvk+ vi]”
+ a-s fx[Vi+ Vel A (k'— k + f). (6)

Here ef = @, (af)? + €y is the energy of a spin
wave; Eyp., = Ex + 2uMydoo is the energy of an
electron with wave vector k and spin projection
o(o= i‘/z); Vg = ﬁ"iaEk/ak is the velocity of
the conduction electrons; A* = A, + iAy;

. , [, k=0
A= § e, Ji= {7 (i, o= |y 0
(M

(Q is the volume of the elementary cell).

The operator #;int describes the creation and
annihilation of a spin wave with change of the pro-
jection of the electron spin (sd-exchange interac-
tion), and the operator ¥, jnt describes the crea-
tion and annihilation of a spin wave without change
of the projection of the electron spin.

3. The change in unit time of the number of
spin waves with wave vector f, caused by the sd-
exchange interaction ¥, jnt and the spin-orbit in-
teraction %5 jnt, is determined by the formulas

zf {ny N}’
29 {n, Ny + &" (n, N}, (8)

where the collision integrals £’ and %Y, con-
nected respectively with the Hamiltonians #; int
and #y ipts» are equal to

21“’“ M° ZlJfAkklz{(nf+ DN, (1 —Nw)
— niNw_(1 —Nk+)}A(k’———k—I—f)6(£r—Eh+ Ey).

L)
S [ Aer

Kkl P 2<1 o %tan-l%)z

X | fx [Vi+ viel* |2 {(ns+ 1)(1 — Niwo)Nio— 11 (1
— Nio) Niw} A (k — k'— 1) & (e Ex— Ex).

ng= ;lfCOI
xf {n; N}

2{%n, Ny =

2n netdpM,

(r)
{n, N} = TV

10)
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Here ny and Ny, are the distribution functions of
the spin waves and of the electrons, respectively.
The change in unit time of the number of elec-
trons in the state k, ¢ is determined by the fol-
lowing kinetic equation:
Nie=(NioJeol= LE) {n, N} 4+ L2 {n, N},  (11)

where the collision integrals L{>) and L{:} are
connected with the Hamiltonians X, jpt and ¥ int
and are equal to

() 8nusM,
3 {n N} H;V ? Z IJfAkk'iz{ni(] —Nk+)Nk/__
f,k’

— (+ (1 =N ) Ni,} A (K'— k + 1)  (Ew_— E, + 1),

(12)
+ 9 tan-t1 )

X x| v+ viel*| 2 {[(ﬂt+ 1)(1 — Ni,) Ni,~

— 1 Niy(1—Nie,)1 A (K — k' + 1)

X 8 (Ey— E;— er) —[(nt + 1)Ni, (1—Ny,)

— (1 — Ni,) Niey] A (k — K'— §) 8 (E5— EX + 1))
(13)

(e) (r)
Lk_ and Lk_ have a

8m2e? M Mo
hc?

Lo ), N} = Akk

The collision operators
similar form.

By use of the expressions for the collision op-
erators, one can find the mean rate for the various
processes of collision of spin waves with electrons.
This rate is determined in accordance with the
formula

W——=—2‘(6n) no/ s, (14)
where (6%/6n), is the variational derivative of
the collision integral with respect to the distribu-
tion function, evaluated at the equilibrium values
of the distribution functions of the spin waves, nd,
and of the electrons N! -

By use of the expression (9) for 2}6) and of
formula (14), one can calculate the mean rate of
emission or absorption of a spin wave by an elec-
tron, as a result of exchange interaction:

1 (ako)® © —0,
Tée) = l/z;(l/)fo( ) W(e 9/T)

(15)

where T is the temperature; @, = 4@, (J/E¥) 2;
* = hvy/a; vy and hk, are the limiting Fermi
velocity and momentum of an electron; and
x/(1—%)

¥ (1) = 5 In(l —0ln 2 4§

In(l+1)
T—> — dt.

The expression for 1/7{%) simplifies consider-
ably in the limiting cases of high and low tempera-
tures:
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1 ’Vn; T\
@ ~ECh (ako)® (§:> for 6.>T>0,,

1 ~ {(akg)? B¢ (B¢ \ef By \YV2 _
Tge) ~n3/2§(3/2) ﬁ (é:) (T) e &/T for ®0>To (16)

We note that for T = @, both limiting expres-
sions in formula (16) have the same order of
magnitude.

In a similar way one can calculate the mean
rate of emission or absorption of a spin wave by
an electron, as a result of the relativistic inter-
action #y jnt:

5 8.\ Moma? \?
L 52V O ( T) (ako)* (425 Ing;,

w0 TR B
Yo= (8/T)"aq  (8:>T > 6.(aq)?).

On putting 6 =103 °K, aky ~ 1, a ~ 1078 cm,
m~10"%g, and T ~ ®0 ~ 10°K, we get T‘Se)
~107! sec, T‘SZ) ~ 1078 sec; that is, 7 <« 7
for T =@, ~ 10°K. This means that in the
temperature range T R @, the inequality

2©) » @I holds.

The mean rate of scattering of electrons by a
spin wave, as a result of exchange interaction,
can be calculated by use of the expression (12)
for Lk We give here the final answer for
l/T(ee) in the limiting cases of low and high tem-
peratures:3

1 3 E* ( T

2
~ 2z [ 0,/T
e o) e for T< 8,
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1 _3E*eT T
L ~gine, e( 8,

)for 0.>T>6, (18)

By use of the expression (13) for L‘¥), one can
calculate the mean rate of scattering of an elec-
tron by a spin wave, as a result of the relativistic
interaction ¥, jnt:

Y uM,(ek\(1\2 T
g =% <m02>( q) e,
By comparison of the expressions (18)and (19), it
is easily verified that in the temperature range

T R @, the inequality .,.;e) < -rg' ) holds.
4. Thus, in the temperature range T R @, the

(19)

strongest interaction is the exchange. Consequently,

in determining the quasistationary distribution
functions n and N one can start from the equa-
tions?

L®n, N}y =0, 29 {n, N} = 20)

It is easily seen that the general solution of these
equations has the form
'—Ci) 1] 1

o (577) <o)

where &, =y + &_.
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By use of the conservation law for the number of
electrons,
2 Nys = const,
ko
we get

L= Eo+7/2,

The arbitrary y can be related to the size of
the projection of the magnetic moment along the
axis of easiest magnetization (the z axis):

M= —p S<P+02<Pdl' + S MAdr
= MoV — 2 ) g + p 2} (Ny- — Nies ). 22)
k

f

The possibility of the existence of solutions of
equations (20) with an arbitrary value of the
chemical potential y is connected with the fact
that the magnetic moment of the body commutes
with the exchange-interaction Hamiltonian #; j,4.
We note that in formula (22) we have not in-
cluded the contribution of the orbital magnetic
moment of the s electrons; this is permissible
if the length of the free path of the electrons is
much smaller than the Larmor radius in a field
Mo.

We now take into consideration the relativistic
interaction %, jnt- Then the distribution (21),
since it satisfies (20), will no longer satisfy the
equations

£9n, Ny + £%n, Ny =0,

L= Ey— /2.

L%%n, N} + Ln, N} = 0.

Since, however, L) >» L) and £(©) » g
the distribution (21) with a slowly varying para-
meter y can satisfy approximately the kinetic
equations

=2+ 2", Nio= L+ LY.

Since the size of the projection of the magnetic
moment, M, is determined by the occupancy num-
bers of the spin waves and of the electrons, it is
possible, by use of the kinetic equations (8) and
(11) and of the quasi-equilibrium distribution
funetions (21), to determine the change of mag-
netic moment with time caused by the relativistic
spin-orbit interaction. On differentiating equation
(22) for @, with respect to time, we get

. 9)2 [ k T 1
M= = 2n2{hvo + 278, Ved, }7
=7 2 (oW )ty — 2 Sge

Since the relativistic interaction .%’2 int does not
change the number of electrons with a given spin
projection,

D (Nux)ot=0
k
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By using the expression (10) for Z{’ ), one
easily gets the following equation for the change
of the quantity y with time:

Y=—1/, (23)
1 __8(n*—8) (fuoko\2 ¢ (28 \:uM
e~ () % (T*z ) s (@4)
The change of the projection of the magnetic
moment, M, with time is determined by the
formula
(M— M) = (Mzg— M) e/, (25)

where Eﬁz is the equilibrium value of the mag-
netic moment at the given temperature. On set-
ting vy ~ 108 cm/sec, € ~1°K, n ~ 1022 cm™3,
M, ~10% gauss, a ~1078 cm, and @, ~ 10%°K, we

get 1/7 ~ 108 to 10° sec™!. We emphasize that
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the relaxation time of the magnetic moment is
independent of temperature.

The authors express their gratitude to A.I.
Akhiezer for proposing the problem and for val-
uable discussions, and to M. I. Kaganov for dis-
cussions of the work.

15, v. Vonsovskii, JETP 16, 981 (1946).

2E. Abrahams, Phys. Rev. 98, 387 (1955).

$E. A. Turov, Izv. Akad. Nauk SSSR, Ser. Fiz.,
19, 474 (1955), Columbia Tech. Transl. p. 426.

4Akhiezer, Bar’yakhtar, and Peletminskii,
JETP 36, 216 (1959), Soviet Phys. JETP 9, 146
(1959).

Translated by W. F. Brown, Jr.
125



