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The correlation of the polarization of conversion electrons and {3 particles emitted in the 
decay of oriented nuclei is considered. The calculation is carried out with allowance for the 
electric field of the nucleus. Formulas are derived for the angular distribution, and longitu­
dinal and transverse polarization of conversion electrons from any shell with an arbitrary 
multipole mixture. The numerical results for the LI, Ln, and Lni shells refer to M1 and 
E2 multipoles or their mixture, and are presented in the form of tables of the b~ coeffi­
cients. These coefficients also determine the polarization of conversion electrons emitted 
after {3 decay of nonoriented nuclei. The correlation of the {3 and conversion electrons can 
be employed to verify the invariance of the {3 interaction under time inversion. 

UNLIKE the {3 decay of nonoriented nuclei, the where the summation is over all magnetic quantum 
daughter nucleus obtained after the {3 decay of an numbers, and the prime denotes averaging over 
oriented nucleus would be polarized even if parity all unobserved quantities. ~ ... is the matrix ele-
in {3 decay were conserved. The presence of an ment of the conversion process, ~ and ~, charac-
initial orientation of the nucleus leads to an aniso- terize the polarization of the conversion electron 
tropy of the angular distribution of the internal- in its c.m.s., and PMi is the density matrix of the 
conversion electrons. The polarization of internal- initial state. The Hamiltonian of the {3 interaction 
conversion electrons following the {3 decay of non- is the same as in reference 4, represented in the 
polarized nuclei was considered in a number of multipole form analogous to that in reference 5. 
works. 1-a The present article supplements there- The electron is described in (1) by its momentum 
suits of these papers by considering mixed conver- p, and its spin component along p. The wave func-
sion transitions from three L subshells, and pure tion of the emitted electron is a solution of the 
transitions from the Lin subshell. Dirac equation which represents at infinity a 

The investigation of the polarization correlation superposition of a plane and converging spherical 
of {3 particles and the following conversion elec- wave: 
trons in the {3 decay of oriented nuclei can furnish 
more complete information on the {3 -interaction 
constants. 

We consider the 
/3 c. e. 

I;-/1_,./2 

cascade ( c.e. is a conversion electron). We 
choose the direction of the spin Ii of the oriented 
nucleus as the z axis, we denote the momentum of 
the emitted {3 particle with p, and the unit vector 
along the direction of emission of the conversion 
electron with n. The correlation function of the 
two successive nuclear emissions, when the inter­
mediate state is not perturbed, can be written in 
the form 

lpo) = (4:rt)'/,~ i'•(2l + l)'I•C(llf20o; jo)D~a(Z-'>-P) 
xm 

X exp [-if:!. (x)]l xm), 

I xm) = (-if" (r) X~" (r}). 
g" (r) X::' (r) 

The state of the electron is characterized by the 
magnetic quantum number m, and by the eigen­
value K of the operator {3 ( uL + 1 ). 

(2) 

(3) 

The conversion matrix element can be written 
in the form 

~ = ~ ~ 'Y;Q* (:rtLM) '1"1d't' ~ 'ljJ2B (:rtLM) 'ljJ1d't' (4) 
LM 

where "IJ12 and "IJ1 1 are the wave functions of the 
nucleus after and until conversion, 1/!2 and 1/!1 are 
the corresponding wave functions of the electron, 

(1) and 1r indicates the transition parity which is 
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( - 1 )L for electric and (- 1 )L + 1 for magnetic 
multipoles. The electromagnetic interaction is 
invarient under time inversion; the nuclear matrix 
elements can, therefore, be considered real with­
out loss of generality. 

For an electric multipole we have 

B (ELM)= [L ~ 1 rhL (ror)iYLM (n) 

[ 2L + 1 ]'/, + 7+1 hL-l ( ror) Cl y L, L-1, M (n), 

and for a magnetic multipole 

B (MLM) = hL (ror)C~Y LLM (n), 

where w = E 1 - E2 is the energy of the conversion 
transition, a is the Dirac matrix, and hL is a 
spherical Hankel function of the first kind. The 
initial wave function of the electron is normalized 
to unity in configuration space, and the final to a 
o function of the energy. We can then write 

'P2 = 4n ~ V £ 2 [X~' (n)]Jit", X~~. (n)) i1•exp [- il1 (x2)]. 
><,M, P2 \g><, X><,' (n} (5) 

The electron matrix elements in (4), after inte­
gration over the angular variables, take on the 
form 

B~1 (nLm) = \ ljJ;BljJ1d-r 

L ll 'j (!2 
M1 fl.• m 

X ( h _l/2 ~) Y 1,p., (n) &"• (nL), 

&x, (ML) = [L (L + 1 )J-'1• exp (i6",) (x1 + x2) (R1 + R2), 

&", (EL) = [L (L + 1 )J-'I•exp (i6",) [(Ra + R4 - R. + Rs) L 

- (x2- X1) (R. + Rs)], 

6", = ~ (x 2)- n (12 - 1 )/2, (6) 

The radial integrals Rn are defined in the book by 
Rose, 6 h is the angular momentum of the electron 
before the conversion, and L is the multipolarity 
of the transition. 

The polarization of the conversion electrons is 
determined by 

(a)= Sp PajSp P, (7) 

where %<a> is the mean value of the electron 
spin in the rest system. The Pauli matrices are 
conveniently expressed in terms of the coefficients 
of the vector sum: 

cra· = V6 <- 1 )'/,-a(_1:~ 112 1 ) 
b G -m · 

(8) 

Employing formulas (1) - (8), and averaging over 
the direction of emission of the neutrino and the 
polarization of the {3 particle, we obtain 

~ = SpPa 

= ~ (-)L1+R+•t.(1,)[2v+1 ]'l·xj~; 
vkR:rm' 2R + 1 

L, L1<L', L: V 

X bR (L1L~)[F R•k (p, nW (2- o,,•oLL') N (nL) N (nL') 

X [I~' (nL) /~' (nL')]'I•Fk (LL'l211)b~'q (nLn' L') +c. c. (9) 

SpP= ~ (-)L~+R+•[1+(;-1)k]f.(/;)[;~++\]'/, 
vk.Rttn' 

L,, L1-<:,L', L; 

X X~~~ ~: ~: \bR (L1L~) FRvk (p, n) 
v k R 

x (2- o,,·ow) N (nL) N (nL') 

X [l~'(nL) /~'(nL')]'I• F k (LL' / 2/ 1) b~'q (nLn' L') +c. c. 
(10) 

Here Fk are the "geometric factors" that charac­
terize the electromagnetic radiation; they are 
tabulated in reference 7. We note that 

F0(LL'l2l1) == 6LL'• 

We describe the initial orientation of the nucleus 
by means of the statistical tensors 

f.(/;)= ~(-1)1;-M;C(IJ,v; M,-M,)pM;" 
M; 

bk and bkq are parameters of the conversion 
electron for the correlation of the directions and 
for the polarization, respectively: 

W(nLn'L') 

__ 1 L+L' [ L (L + 1) L' (L' + 1) ]'/• Mk' (:rtLn'L') 
- ( ) (2L + 1) (2L' + 1) [D~' (nL) D~' (:rt' L')]'/, ' 

b~'q (nLn' L') = (- 1 )L+L'+l [ L (L + 1) L' (L' + 1) ]'/• 
(2L + 1) (2L' + 1) 

M~'q (nL:rt'L') 

X [D~' (:rtL) D~' (:rt'L')J'I• ' 
(11) 

M"' ( L , L') = [ L (L + 1) L' (L' + 1) ]-'/,(L L' k)-1 
kq n n (2L + 1) (2L' + 1) 1 - 1 o 

X (2K + 1 )-'1•i£x, (nL) it;, (n'L') 

XC U2hL; 1/2 - 1/2) C (iahL'; 1/2- 1/2) C U2iaK; 1/2- 1/2) 

x Aq (x2xa) W (j2LiaL'; hK); 

(12) 
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The expression for M~1 is obtained from (12) if it 
is assumed that Aq = 1. Furthermore 

D"' (rrL) = L (L + 1) M"' (:rtL) 
0 2L + 1 ° 

]"• L) _ ~ D~' (:rtL) • 
0 (:rt - P• 2L + 1 ' 

the latter value is proportional to the conversion 
coefficient up to a nonessential factor. 

N ( 1rL) are the reduced nuclear matrix ele­
ments, and bR are parameters characterizing the 
{3 decay. For allowed transitions bR ( L1L'1 ) has 
the form [for L1 ¢ LJ. the values bR ( L1LJ.) 
+ bR ( L'tL1 ) are given]: 

l;O (00) = [ I Cs /2 + I c~ 12 + I Cv /2 

+I c~ 12 ± 2 Re (C;cv,+ c;c~)yje]/ Mpl2 , 

b0 (I, 1) = - V3rl Cr /2 + 1 c~ /2 + 1 c A 12 + ! C~/2 

± 2 Re (c;c A+ c;c~) r/eJI Mar/ 2 , 

b1 (0, I)= [2 (C~C~ + c;cs- c~c~- c~cv) ± 2 (- i) 

X(C~C~ + C~Cs- C~C~- c;cv) rJ-ljp] M;rMFp/e; 

b1 (1, l)=±V2[2(C~C~-C~C~) 

=t= (- i) 2 (C~C~ + c;CA) aljp]/ Mar /2pje. 

Here the upper sign refers to the electron decay, 
the lower to positron decay, and E is the energy 
of the electron. The value MQTMF is assumed 
real. For first-forbidden transitions one can use 
the most complete results of Morita. 8 

The function FRvk determines the angular de­
pendence 

F Rvk (p, n) = 4:rt ~ C (vkR; Of.L) Y Rv. (p) Y~fl. (n). (13) 
fl. 

The function [ FRvklq is obtained from FRvk by 
substituting ( -1 )llYk-p for Y~, where 

\
Yi;=~(n) q=-1 

yz_fl.(n).= [k (k + 1)J-'~•v1~f1. (n) q = 1 

~ i [k (k + 1)]-'I•Yl,~v. (n) q = 0 

On the right we have the spherical vectors 9 which 
are conveniently represented in a spherical coor­
dinate system: 

[Y~:.~]n = Y k-fl.• 

[Y~±:~]e = i [ Y~~fl-l'~' = [k (k + I )J-''• aae Y k-f>. (n), 

[Y~±:~]"' = - i [ Yk~fl-la = [k (k + 1 )]-'1• ~ aa Yk-f>. (n). 
sm" !p 

(14) 

Hence it is seen that it is sufficient to know the 
FRvk in order to obtain the values of [ FRvk ]q by 
simple differentiation. 

The mixing coefficient of the multipoles L and 
L' for y rays is determined in the following 
manner: 

fJ (:rtL:rt' L') = N (:rt' L')! N (:rtL) = ± [1 y (:rt' L')/1 y (:rtL)J''•, 

where Iy ( 1rL) is the intensity of the pure 1TL-pole 
y radiation. For conversion electrons one can 
introduce the corresponding mixing parameters 

b (:rtL:rt' L') = [c (:rt' L') ]''• fJ (:rtL:rt' L') = [ 10 (:rt'L') ]''·or-L 'L') 
c (:rtL) / 0 (:nL) , .. 1t ' 

where c ( 1TL ) is the conversion coefficient for a 
1TL multipole. Selecting an arbitrary multipole 
1r0L0 as the standard, we can write the polarization 
of the conversion electrons for an arbitrary mul­
tipole mixture in the form 

<a>= ~ (-)L',+R+vfv(J,.)(:~~~J"x/ ~;k~~~ 
'L't~<'l\,· 'V k R. 

Xb(:rt0L0 ; :rtL)b(:rt0L0:rtL) 

X F . .(LL'/2/t)b/,'q (:rtL:rt'L') +c. c. }w-I; (15) 

W = ~ (-)L,'+R+v lf1 + ~-1)k] 
vkRrtrt'; 
L,L1<,L',L1 ' 

[ 2v + 1 •;, I IJ1L~ I 
X fv (I;) ZR. + 1] X I,hL1 1 

vkRI 

X bR (L1L~) F Rvk (p, n) (2- {)""' bw) 6(:rt0L0:rtL) 

X 6(:rt0L0:rt'L') Fk(LL'l 211 )b/,'(:rtL:rt'L')+ c.c. (16) 

The quantity W determines the angular distribu­
tion of the conversion electrons following the {3 

decay of oriented nuclei. 
The angular correlation of the conversion elec­

tron from the {3 decay of an oriented nucleus can 
be used to verify the invariance of the {3 inter­
action under time inversion. One of the methods 
of verification consists in measuring the upward­
downward asymmetry of the {3 intensities for the 
correlation of the f3 particle and the conversion 
electron (with regard to both direction and polari­
zation) in the decay of oriented nuclei with respect 
to the plane containing li and n. 

If it is assumed that there occurs an A V and 
TS interaction (the assumption that there is no 
interference between the AV and STP interactions 
is in agreement with present-day data on {3 decay), 
it follows from (15) and (16) that the asymmetry 
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arises from terms with odd v + R + k correspond­
ing to the interference between f3 -decay matrix 
elements of various rank (this follows from the 
properties of the Fano coefficients for odd v + R 
+ k ). All these terms contain the factor 

Im (C~c~ + c;cs- c~c~- c::cv ). 
To observe the contribution of such terms to the 

polarization of the conversion electrons, it is suf­
ficient to know the dipole polarization of the initial 
nucleus (the term which contains F 111 ~ I [ p x n]). 
The absence of such terms in the experiment could 
serve as a proof of the invariance of the f3 inter­
action under time inversion. However, if another 
combination of the interaction variants occurs 
(interference of the A V and STP interactions is 
present), then terms proportional to aZ/p will 
enter into the correlation of f3 particles and con­
version electrons. These terms may cause an up­
ward-downward asymmetry of the f3 intensities 
with respect to the plane containing Ii and n, even 
when time parity is conserved; an example is the 
term 

Hence it is clear that in this case both terms 
which do not conserve time parity, and Coulomb 
terms which do conserve time parity will contrib­
ute to the same phenomenon. It must be noted that 
in this case ( interfe renee between the A V and 
STP interactions) it is possible to check time 
parity by investigating the correlation between the 
polarization of the f3 particle and the conversion 
electron without employing oriented nuclei. 

We denote the pseudovector of the f3 -particle 
polarization in the rest system by ~ 1 (X, w ). The 
angles x and w are taken in a coordinate system 
whose z axis is along the direction of p. The fol­
lowing expression for the longitudinal polarization 
of the conversion electrons, when the f3 electron 
and its polarization are observed and the initial 
nucleus is not oriented, can then be obtained: 

<a)n = 2} {[2p Re Qm + 2cxZ Im Qn- Aft/; (p Re Q1 
nn'L<L' 

_:_ cxZ Im Q1)] E-1 cos en-~ (2 ReD+ M 1/ 2G) 

><(cos en cos X + sin X sin en cos w) 

+ [- 2p Im Qn + 2cx Z Re Qm + AJ,I; (p Im Q1 

+ ~(1- r/E) [- 2 Re (Do+ D1) 

+ 'J...1,Ii (M 1 + N 1)] (2 cos en cos X- sin en sin X cos w)} 

X (2 -_o,,·ow) i"(rr.0Lorr.L) 6 (rr.oLorr.' L') 

X F r( LL 'I 21 1) b~~-1> ( rr.Lrr.' L ') 

X {~62 (rr.0L0rr.L)V3[b0 (0, 0) + M1-fN1 
,-;L 

+ E-1 (p Re (Q0 + Q1) + cxZ Im (Qo + Q1)J cos X 1\-1· 
(17) 

The transverse polarization is obtained from the 
same formula by substituting b~l for b~ l-1 >• and 
by using relations (14). Formula (17) is written in 
a coordinate system whose z axis is directed 
along p, and in which n lies in the zx plane. In 
(17) we have put 

'J...1,Ii = !/1 (11 +I)- I; (Ii +I)+ 2] /2 [11 (It+ 1)]'!.. 

The remaining quantities in (17) are defined as 
follows ( cf. reference 10 ) : 

Qm =- (~sr- 3vA) MFMGr, Qn = (~vr- ~sA) MFM~r, 

D0 =- (cxsr + cxvA) MFM;r, D1 = (cxvT + CXsA) MFM;T, 

Re Ql = (~TT- ~AA) 1 MGr[2, Im Ql =- 2 Im ~AT I MGT /2, 

Re Qo = (~ss,- ~vv) I MF [2, Im Qo =- 2 Im ~VS I MF [2, 

.D =(Do- yD1jE)- 2 (D1- rDoiE), 

G = (M1- yN1jE)- 2 (N1- rM1/E), 

where 

Formula (17) describes electron decay. To ob­
tain positron decay, the following substitutions 
have to be made: 

z_,._z, 

and 

c i _,. -c;·, (i = A,S) 

(i=V,T). 

Finally, we bring the expression for the polar­
ization of the conversion electrons for the case 
when an M1-E2 multipole mixture is considered, 
the initial nucleus is not polarized, and the f3 
transition is allowed (no polarization of f3 parti­
cles is observed). From (15) or (17) we obtain 

<a>= ~ y-{n(p_n)!F1 (11!2/1)b~(-1>(MI) 
(1 + 62 ) 3 \ p 

+ 2bF1 (12 / 2/ 1) b~(-1> (MI£2) + b2F1 (22/2/1) b~(-1> (£2)] 

+ 21P [p- (pn) n] [F1 (II/ 2/ 1) b~t (MI) + 2bF1 (12/2/1) 

X b~t (MIE2) + b2FI(22/2/1) b~t(E2)lt. 

Here 6 = K ( M1E2) and a differ by a factor 
- [ (It + 1) /It ]1fi from the expression employed 
by Geshkenbeln.2 For reference we list the values 
of F 1: 
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p (LL/ 1) = "{3[L(L+1)+/dh+1)-/2 (12 +1)] 
1 21 2L(L+1)[h(I1 +1)]'/, ' 

p (121 J) = [3 (/z + h -1) (/z + h + 3)(h -Iz+2) (/2 -/1 + 2)]'/, 
1 21 4[5h(l1+1)]''• 

Our consideration of the {3 -e correlation is 
applicable when the nucleus is free in the inter­
mediate state. If the nucleus is acted upon in the 
intermediate state by a torque, arising as a result 
of the interaction of the magnetic dipole moment 

tion is described by the precession frequency w, 
then for magnetic interactions w is equal to the 
Larmor frequency, and for the quadrupole inter­
action w...., Q and fiV I az 2• A rough criterion of 
the applicability of our considerations can be ob­
tained from the condition WTit < 0.1. Hence Tit 
< lo-to sec. 

In conclusion, I express my deep gratitude to 
B. V. Geshkenbe!n and I. S. Shapiro for their 
interest in the work and its discussion. 

APPENDIX 

fJ with the external magnetic field B, or from the 
interaction of the electrical quadrupole moment Q 
with the gradients of the electric fields a2v I az 2, 

then the (3 -e correlation, generally speaking, de­
creases. The magnitude of this perturbation de­
pends mainly on the average lifetime Tit of the 
nucleus in the intermediate state. If the perturba-

Below we list the values of the polarization 
parameters calculated with the aid of tables of 
radial integrals compiled by L. A. Sliv (private 

TABLE I. Polarization pa-
Ll 

rameter b1(-1) ( M1E2) for 
the longitudinal polarization 
for an Ml-E2 mixture and 

conversion from the LI shell. 

k z 
0.10 I 0.15 I 0.2 1 0.3 1 0.5 1 o. 7 

57 0.045 0,18 0.25 0.45 0.54 
65 -0.047 0.047 0.14 0.26 0.36 0.47 
73 0.11 -0.046 0.02 0.14 0;29 0.39 
81 0.41 0.075 -0.47 0.031 0.19 0~31 

TABLE IV. Polarization pa-
Lu 

rameter bH-t> ( M1E2 ) for 
the transverse polarization 
for an Ml-E2 mixture and 

conversion from the Lu shell. 

z \----~----~k~--~-----
0.1 1 o.15 1 o.3 1 o.1 

57 -0.94 -0.83 -0.81 -0.76 
65 -0.92 -0.87 -0.84 -0.79 
73 -0~93 -0.88 -0.85 -0.81 
81 -0.91 -0.88 -0.86 -0.80 

TABLE Vll. Polarization pa­
Lm 

rameter btH> ( M1E2) for 
longitudinal polarization for 

an Ml-E2 mixture and con­
version from the Lm shell. 

' \ " • I " " I , , I :. I " • I o. 7 

·-
57 0.55 0.58 0.56 0.48 0.28 -0.011 
65 0.51 0.56 0.52 0,45 0.26 0.011 
73 0.44 0.49 0.48 0.43 0.24 0.046 
81 0.38 0,45 0.43 0.38 0.24 0.12 

TABLE n. Polarization pa-
Ll 

rameter bto> ( MlE2) for 
the transverse polarization 
for an Ml-E2 mixture and 

conversion from the LI shell. 

k 

z 
I I I I 0.10 0.2 0.3 0.5 0.7 

57 -0.098 -0.35 -0.49 -0.63 -0.68 
65 0.008 -0.23 -0.37 -0.50 -0,61 
73 -0.13 -0.081 -0.23 -0.40 -0.51 
81 -0.42 -0.001 -0.094 -0.28 -0.41 

TABLE V. Polarization pa­
Lm 

rameter b1<-t> ( Ml) for 
longitudinal polarization in 

the case of a pure conversion 
transition from the LUI shell. 

z I 0.1 I 0.2 I 0~3 I 0.5 I o. 7 

57 -0.06 -0.21 -0.32 -0.43 -0.49 
65 0.006 -0.14 -0:27 -0,41 -0.48 
73 0.08 -0;12 -0.24 -0.38 -0:46 
81 0.13 -0.08 -0.19 -0.34 -0.44 

TABLE Vlll. Polarization 
LIII 

parameter b1o> ( MlE2) for 
transverse polarization for 

an Ml-E2 mixture and con­
version from the Lui shell. 

k 

z 
1 0.151 0.2 1 0.3 1 0.5J 0,7 0.1 

I 
57 0.68 0.62 0.61 0.56 0.65 0.69 
65 0.82 0.74 0.68 0.66 0.69 0.75 
73 0.89 0.82 0. 72 0. 71 0.74 0.81 
81 0.89 0.83 0.77 0.72 0,79 0.91 

TABLE ill. Polarization pa-
Ln 

rameter btH> ( MlE2) for 
the longitudinal polarization 
for an Ml-E2 mixture and 

conversion from the LU shell. 

k 
z 

0.1 0.3 0.7 

57 -1.0 -0.99 -0.97 
65 -1.0 -0.99 -0.97 
73 -1.0 -0.98 -0.95 
81 -0.97 -0.95 -0.92 

TABLE VI. Polarization pa­
Lm 

rameter bto> ( Ml) for 
transverse polarization in 

the case of a pure conversion 
transition from the Lin shell. 

z I 0.1 I 0,2 I 0~3 I 0. 5 I o. 7 

57 0.19 0.29 0.38 0.41 0.40 
65 0.05 0.23 0.31 0.37 0.38 
73 -0.03 0.16 0.23 0.32 0.34 
81 -0.09 0.08 0~ 16 0.24 0.27 

TABLE IX. Polarization pa­
Lm 

rameter btH> ( E2) for 
longitudinal polarization in 

the case of a pure conversion 
transition from the LIII shell. 

k 

z 

I I 1 0.5 I 0,1 0.2 0.3 0.7 

57 0.35 0.35 0.34 0.28 0.082 
65 0,32 0:33 0,33 0.23 0.1 
73 0.27 0,29 0.29 0.21 0.12 
81 0.21 0,24 0,23 0.19 0.115 
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TABLE X. Polarization pa­
Lm 

rameter bw> ( E2) for the 
transverse polarization in 

the case of a pure conversion 
transition from the Lm shell. 

k 

z 

I I I I 0.1 0,2. 0.3 0.5 0.7 

57 0.83 0.59 0.37 0.006 -0.42 
65 0,97 0. 71 0.47 0.14 -0.27 
73 1.15 0.87 0,64 0.27 -0.062 
81 1,29 0.98 0. 79 0,43 0.15 

communication). The calculations are carried out 
for nuclei with Z =57, 65, 73, and 81, and transi­
tion energies from 0.1 to 0. 7 in units of mec2 for 
conversion from the LI, Ln, and Lm shells. 
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