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Higher Born approximations with respect to the nuclear Coulomb field are considered in pair 
creation processes. The integrals of the first Born approximation can be computed exactly 
and lead to a simple analytic result. 

IN a number of quantum -mechanical problems one 
neglects the nuclear Coulomb field in the so-called 
Born approximation [we shall call this the zeroth 
Born approximation ( z. B. a. ) ]. The computation 
of the higher approximations with respect to the 
Coulomb field is connected with considerable math­
ematical difficulties (see, for example, references 
1 and 2). These difficulties are particularly great 
in the discussion of nuclear conversion with forma­
tion of electron-positron pairs, 2 so that up to now 
expressions for the probability of this process have 
only been obtained in the z. B. a. 3 At the same time, 
the calculations with exact wave functions in the 
field of the nucleus for the pair conversion are ex­
ceedingly cumbersome, so that it is very desirable 
to develop approximate methods. 

In the present paper we consider the higher 
Born approximations. As the perturbing potential 
we choose a potential of the Yukawa type. In the 
final formulas the limit of a pure Coulomb potenti'al 
is taken. In Sec. 1 we give the general expressions 
which can be applied to other problems (e.g., the 
photoeffect) besides the pair conversion. Section 
2 is devoted to the discussion of the higher Born 
approximations for pair conversion. In Sec. 3 and 
the Appendices the calculations for the pair conver­
sion are carried out to the end in the first Born 
approximation. 

1. GENERAL RELATIONS 

The matrix element describing quantum transi­
tions of the electron (positron) due to the action 
of an electromagnetic field with frequency w has 
the form (reference 4)t 

*This paper was presented at the Ninth All-Union Confer­
ence on Nuclear Spectroscopy (Khar'kov, January 1959). 

tlf not noted otherwise, the notation is the same as in the 
book of Akhiezer and Berestetskii. 4 Heaviside units are used 
throughout. 

Sl-+2 = - 2ltieWb (£2 - E1 - w), 

W = ~ 1F\(r) B (r) '¥1 (r) d3r, 

where O:'j, {3 are the Dirac matrices. B ( r) cor­
responds to the electromagnetic field, as for ex­
ample, the photon ( photoeffect, bremsstrahlung) 
or the potential of the nuclear current (conversion). 

The functions 'lfi in (1) are the wave functions 
of the free or bound electron (positron) in the 
static field of the nucleus. If we regard the latter 
as a perturbation for one or both of the functions 
'l'i and proceeding as in reference 4 (see Sec. 29), 
we obtain 

00 

k=O 

=- _l!!__ ~ d3feiir if- m . \ d3r' e-i!r' A(e} (r') '"~k-1) (r'), 
(2n)3 .\ { 2 + m•- te .\ 'Y 

'i'lo) (r) = u (p;) eiP; r. (2) 

For the field of the nucleus we take 

A<e) ( ) _ A<e) ( ) _ . eze-J..r r- 4 r--t~. (3) 

In the momentum representation these formulas 
take the form 

'¥ (r) = ~ cp (f) elfr d3f, 

cp (f) = { ~o ~n cp(n) (f)} U (p), 

(n) (f) __ m- i[ \ i• (n-1) ( ) d3 
cp - f!+m2 -ie j(f-s)2 +A.2 cp s s, 

ro = E, cp0(f) =1'\(f-p}. 

(4a) 

(4b) 

(4c) 

The matrix element (1) is in the momentum rep­
resentation 

w = i~d3fld3f%cp2(f2)b(f2-fl)cpi(fl), (5) 
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where 

b (k) = - i ~ e-ikr B (r) lflr. 

Using (4c), we can write W in the form 

W = iu (P2) wu (pl), (6a) 

w = w(O 1 0) + ~ [w (0 11) + w (11 0)] + ~2 [w (0 J2) 

+ w(1 JI) + w(2jO)J + ... , (6b) 

w (kIn) = ~ d3f 1d3f2 {p~"J (f2) 6 (f2- f1) <p~n) (f1). (6c) 

2. PAIR CONVERSION 

For the description of nuclear conversion proc­
esses with formation of pairs we must make the 
following changes in the expressions of Sec. 1: * 
Pi-- - Pi• fi-- - fi, Ei-- - Ei, and B must be 
replaced by the singular multi pole potentials B~~. 

Using the explicit expressions for the B~~ of ref­
erence 4, we obtain in the momentum representation 

bl~ (k) = Jz (k) Yz.z.m (k / k) "(, (7a) 

"(1) 1 v--bzm(k) = Yt+il 2l + 1 Jz_I(k) Yz.z-1.m(kjk)"( 

- i YlJz (k) Yzm (k I k) r(J, (7b) 

J1 (k) = - i ~ 0 1 (ror) g; (kr) r2 dr. (8) 

The spherical vectors Yz,l+A.,m and the func­
tions Gz and gz, which are proportional to the 
spherical Hankel and Bessel functions, respectively, 
are defined in reference 4 (pp. 33 and 426). 

The integral J l ( k) will be discussed in Appen­
dix B. 

The expression for the differential conversion 
coefficient for pair creation is, of course, of the 
same form as in the z. B. a.: 

ctw d3 Ptd3 P• 
d~n = 4 (Zn)• a6 (£2 + £1- ro), 

a = LJ I w~~ 12, (9) 
p.,p., 

where the summation goes over the spin states of 
the electron and the positron. 

Using (6), we obtain 
00 

a= E 1E -41 Sp(w(irh+m)w(ip2-m)l= E 1E ,.,~·a., 
I 2 1 2 s~o (lOa) 

a.= 2; aG,J~,). w=r4w+r4, (lob) 
h+n+h'+n'=s 

a(:,l n,) = ~Sp [w(k In) (ip1 + m)w(k' In') UP2- m)]. 
n (lOc) 

*Below the index 1 will thus refer to the positron and the 
index 2 to the electron. 

Using the properties of traces and the relation 
of charge conjugation 

-r 
<pi (f)= {C<p2 (f)}<2~1> 

[ ( 2;::!: 1 ) signifies the interchange of 1 and 2, the 
index T denotes the transpose, and C is the ma­
trix of charge conjugation], we easily derive the 
following properties of the symbols (lOc): 

a(:, I ~') = [a (:' I ~~) J". a (:,I ~') = (- 1) s a G, / :, ) <2~ ll' 
s = n + n' + k+k'. (11) 

3. CALCULATION OF THE PROBABILITY OF 
CONVERSION WITH FORMATION OF PAIRS IN 
THE FIRST APPROXIMATION 

In the present paper we restrict ourselves to 
the calculation of ai. * With the help of (11) we can 
write 

( 1 ' 0' 
a1 =2Rea olo)-(2+=1), 

a(~ I~)= ~Sp [w(IIO}(ipl + m) w(O I 0) (ip2- m)], 

w(ll 0) =- ~d3f2r4(if2 -m)bl~ (f2 + P1) /((f2- P2)2 

+ 1,2] (fi- p~- ie), 

Here we have used the identity 

g + m2 = t; + m2 - Ei = f; - p;. 

(12) 

To simplify the subsequent calculations we intro­
duce the following notation: 

P1+P2=v, f2+P1=k, f2-P2=q=k-v. 

b1 = 6J~(ll 0) = ~d3kb~~ (k) /(q2 + J.2)(fi- p;- ie), 

Then the expression for a1 has the form 

a1 = 2Re 11- Sp {y4 (if2- m) b!(ip1 +m) b~ (ip2 -m)}] 

-(2~ 1). 

(13) 

(14) 

It should be recalled that b1 is an integral oper­
ator which acts on functions of k both to the left 
and to the right. 

First we calculate the traces and then the inte­
grals, because in this case the expressions for the 
integrals assume a simpler form. 

Let us rewrite (14) in the form 

*The calculation of the correction ~(«Z)2 will be pub­
lished in a later paper. 
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1 " " 1\. " 1\ 

a1 = 2Re [4 Sp {bdiPI + m) bo(iP2- m) Y4 Uf2- m)}] 

-(2+=1). (15) 

Using the notation (13), we obtain 

UP2- m) Y4 (iG-m) =- 2£2 (ip2- m) + (ip2 -- m) y4 iq. 
(16) 

We now split a 1 into two parts, one containing 
q, the other not containing q: 

a1 = a1 (0) + a1 (q), 

a1 (0) = {- 4£2 Re ~ Sp [b1(ip1 +m) 6: (ip2- m)J} - (2 += I). 

ar(q) = 2Re ~ Sp {bdip 1 + m) b~ (ip2- m) Y4 iq} -- (2 ~ 1). 

After evaluating the traces we find 

a1 (0) = 4£2 Re {(m2+ £1£2- P1P2) (bib~)+ (b1P1)(b~p2) 

+(bip.)(b~p1)} - (2+= I), 

01 (q) = 2Re { (b1q){E1 (b~ P2) 

+ E2 (b~p1)- (m 2+ E1E2- P1P2Jb~ l 

+ (bxb~)!Et (p.q) - E2 (p1q)J + (b1p1) [£~ (b~q) 

- b~ (p2q)] + (btP2)[b~ (p1q) 

- £1 (b~ q)]- b1 [(p1b;)(p2q)+(plq)(p2b~) 

+ (m2+ £1£2- P1P2)(b~q)]}- (2~ 1). (17) 

Using the definitions of b0 and b1 [formulas 
(13) and (7) ], we average the scalar products of 
the spherical vectors and the products of the spher­
ical harmonics in the numerators of the integrands 
over the magnetic quantum numbers. The averaged 
expressions must, of course, be invariant under 
spatial rotations, i.e., they must be expressed in 
terms of functions of scalar products of ordinary 
vectors. These invariants are calculated in Appen­
dix A for all occurring combinations of spherical 
vectors of the electric or magnetic type. It follows 
from the formulas of Appendix A and (13) that the 
numerators of all integrals are proportional to 
functions of the form 

(I, k) P, (~:). 

(I k) ka.k(l p" (~) 
' k2 1 kv ' 

where Pz is the Legendre polynomial. The re­
quired real parts of these integrals are calculated 
in Appendix C. 

It is seen from the final expressions ( C. 6 ) to 
( C.9) that the infinities arising in the limit of the 
pure Coulomb field drop out and that the result of 
the integration can be formally obtained in the fol­
lowing fashion: replace the integral sign by rr3/2, 
change the denominator of the integral (13) to p2, 

and replace k by v everywhere in the remaining 
part of the function under the integral. 

After the general proof of the necessity of per­
forming these operations we can change the order 
of application and first perform the alterations in 
the expressions which formally correspond to the 
integration and then average over the magnetic 
quantum numbers. 

Making the above-mentioned changes, we find 
that a 1 (q) = 0. 

For a 1 ( 0) we obtain 

aJ(O) = 2n2· n (E2/P2- E1/P1) ao, 

ao= a (8 I 8):= (m2 +.E1£2- P1P2Hbob~) 

+ (boP1)(b~2) + (boP2)(b~p1)· 
Using (18), (lOa), and (9), we have finally 

d~n=d~yAM(Z; £ 1, £2), 

(18) 

(19) 

i.e., d,B~i\. is the differential conversion coefficient 

for pair formation in the z. B. a.* 
The first Born approximation result is there­

fore obtained by multiplying the differential con­
version coefficient for pair formation in the z. B. a. 
by the factor M (Z; E1, E2 ). 

Since M ( Z; E1, E2 ) is antisymmetric in the in­
dices 1 and 2, the term proportional to a Z drops 
out in the integration over E 1 or E2, i.e., it does 
not appear in the expressions for the angular dis­
tribution and the total conversion coefficient for 
pair formation. This is a consequence of the charge 
symmetry of the theory which requires that only 
even powers appear in the expansions of the total 
conversion coefficient for pair formation and of 
the angular distribution in powers of aZ. 

The authors are grateful to B. S. Dzhelepov and 
L. A. Sliv for a discussion of the results of this 
paper and for valuable comments. 

APPENDIX 

A. FORMULAS FOR THE SCALARS FORMED OUT 
OF THE SPHERICAL VECTORS 

To derive the formula for the probability we 
must write down the explicit covariant form of the 

*Formula (19) is, of course, not valid near the limits of the 
energy spectrum, where the parameter O:ZE/p is not small. 
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expressions* 
l 

(1) ~ • 
Sn = L.J (Y l,l+l.,m (kjk) Y l.l+l-, m (v jv)), 

m=-l 
l 

Skr= ~ (pYz,z+l-.m(kjk)(qYz,t+l-,m (vjv)) ', 
m=-l 

l 

S)3>= ~ Yzm(kjk)(qYl,l-1,m(vjv))*. 
m=-l 

We are interested in the form of these expressions 
for A = 0 and A = - 1. 

Choosing the z axis in the direction of v and 
using the addition theorem for spherical functions, 
we obtain 

s<l) = 21 + 1 P ~) 
l,o 4:n: l \kv ' (A.l) 

By definition 
00 

J1 (k) = .<~~)8 ~ Ht1> 1 (oor) I 1 (kr) rdr 
' r rok o '+2 '+2 

'A 

= ~:~)s lim ~ H 1 (oor) l 1 (kr) rdr. 
tr rok 'A-+ooo 1+2 1+2 

Using the antiderivative and the identity 

. 1-ei'Ax p 
hm =-- in6 (x), 
'A-+oo X X 

where P designates the principal value, we obtain 

(4:n:)2 k1 
= - rot+1 k2-ro2- is • 

s<1> _ 21 + 1 21 + 1 P (~) 
l,-L- 21-1 4:n: 1 kv • (A.2) C. CALCULATION OF THE BASIC INTEGRALS 

To derive the remaining formulas we make use 
of the covariant differential representation of the 
spherical vectors (see, for example, reference 4, 
p. 34): 

y (~\ = y<o> (~)- 1 LY (~) 
1,/,m k) l,m .k -VI (I+ 1) lm k 

=VI~~ 1) [k xvkl Yzm (}) • 

Yr,1-1,m (~) = Y 21 ~ 1 Y);;;1> + Y :1 ~ 11 Y1~ 

= y t {Jt'Tk- ,~ [kx[kXVkll}Yzm (}). 
k 21 + 1 r I ' 

After some transformations we then find 

s<2>= 21 + 1 {P' [pxk)[qxvJ _ p" ([qxv]k)((pxk]v)} (A 3) 
10 4:d (I + 1' 1 kv 1 k2v2 ' • 

S}~~1= 4n~v [IP1 (kp)(vq) +P; (kvf1 {(kp)([vxq][vx.kJ) 

+ (vq}([kxp](kXv)) + [-1 ({[kxp)xk}([vxq)Xvl)} 

+r1 P; (kvf2 ([kxp](kx v])([vxq)[vxk])], (A.4) 

s<a>= ¥21 + t fJf1 P ( ) + _1_p' [-vxqJivxtJ} 
I 4nv l l qv JfT 1 kv • 

The formula for the probability contains inte­
grals of the form 

~ J1 (k) P1n>(kv}1, k) d3k 
K<n) K<n> = R.e kv 

( ' ) [(k-v)2+A.•][(k-v+p8)2-p2-iej 

Using the Feynman identity 
1 

! =~dzj(az+b(l-z)P, 
0 

we find 
1 

(.s = 1,2). 
(C.l) 

(K, K)=Re~dz{(l. V) 0~2 +(0, l)V a:z}R. (C.2) 
0 

(' J1 (k) P1 (~~) :d"k 

R = j (k- V)"- i\" ' 
V = v-pz, 

A2 = p2z2- '),,2 (1- z) + iez. (C.3) 

Choosing the z axis in the direction of V and in­
tegrating over the angles in (C.3), we obtain 

00 

( Vv) 2n \ (k2+ V2-A2) R = P, Vv V J lt (k) Qz 2kV kdk, 
0 

(A.5) where Qz are the Legendre functions of the second 
kind. 

B. CALCULATION OF THE INTEGRALS Jz(k) 

To compute the integrals entering in the formula 
for the probability, we must know the singular 
points of the "radial" part of the Fourier trans­
form of the nuclear potential J l ( k ). 

*The first and second sums were computed by Berestetski'l, 
Dolginov, and Ter-Martirosyan5 for the particular case k == v 
and p == q. 

Since the integrand is an even function, we can 
extend the integration from -co to +co and consider 
the contour in the upper half plane. Calculating the 
residues with the help of Appendix B and using the 
identity 

(k + V)2- i\2 VtA dt k + V +A 
In (k-V)"-A2 = J k-t +lnk-V +A 

-V+A 

[the second term is regular in the upper half-plane, 
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see formula (C.3) ], we obtain 
V+A 

R = Pt (~:) Jt~ { ~ Jt(k)Pt C2\~~-A2 ) kdk 
-V+A 

j' J1 (k) P1 U~) (1, k) d3k n• (v") 
R.e [(k-v)2+1-.2J[(k-v+p)2-p2-ie] = ip Jz (v)Pz vu (I, v). 

(C. 7) 

Differentiating both sides of this equation once 
(C.4) and twice with respect to ua /u and setting u = v, 

we obtain 

Substituting (C.4) in (C.2) and separating out the 
term which contains A in the denominator and di­
verges for A- 0, we integrate this term by parts 
over z with dU = dz/A and obtain 

(K, K) = R.en2i {- (1, V) F [ _!_ ln[i !:_ + 2": J 
z=oP P P. 

+ (K.K)o}, 

1 [ J.2 J (K, K)o= (I, V) F ]z=1 PIn 2 + 2P2 

1 

-~ dz [(I, V) F]' In (V z2-~ (1-z) 
0 p 

1 { p VIA + z + t. + ~ dz (I, V) T [~ Jz (k) Pz(x) 
p o . -V+A 

V+A 
1 (' ' .iJ ( 4n)2 J - 2v ~ J1 (k) Pz (x) dk + iJAz (;)2 Qz (y) 

-V+A 

V+A 
iJ [P1 ( (' (4n)2 ]} + (0, I) V av• V J J1 (k) Pz(x) kdk + -w- Qz (y) . 

-V+A (C.5) 

Here 

(Vv) k2+ yz_ A2 w2+ yz_ AZ 
Pz- Pt Vv ' x == 2kV ' Y = 2wV ' 

F = 1 Pz (Jz (k) Pz (k) lv+A- Jz (k) Pt (x) 1-V+A ). 

(K, K )o does not contain divergent parts and con­
verges uniformly with respect to A. The singulari­
ties of the type 

(V + A)2- w2 • (V _ A)z- wz • 

(V + A)2-w2 (V + w)2-A' 
In (V- A)z- wz, In (w- V)2- A' 

under the integral do not give any imaginary con­
tributions on account of the relations 

(A.~O). 

( K, K )o is therefore real for A - 0. 
Finally we have 

It follows from formulas (C.1), (C.6), (C.8), and 
(C.9) that the value of the integral just calculated 
can be formally obtained from the function under 
the integral by replacing the integral sign by 1r3 /2, 
changing the denominator of the expression under 
the integral to p, and replacing k by v in the nu­
merator of all functions. 

By this method one can also compute an arbi­
trary tensor Kaf3 ... a with a rank which is conform­
ity with the convergence of the integral 

\ J1(k) P1 (kv jkv) k<:~.kfl ... k0 

Ka,[l ... a= R.e.) [1] [2] d•k. (C.10) 

In the calculation of Kaf3 ... a we must use the iden­
tity 

( iJ iJ) 1 
X iJV2 + iJA2 (k- V)2-A2. 

As a result we obtain 
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ment of the Legendre polynomial in (C.1) by an ar­
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Translated by R. Lipperheide 
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