ON THERMOMAGNETIC EFFECTS IN SUPERCONDUCTORS

B. T. GEĬLIKMAN and V. Z. KRESIN

State Pedagogical Institute

Submitted to JETP editor March 31, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 502-503 (August, 1960)

It is shown that the Righi-Leduc coefficient does not change when a metal changes from the normal to the superconducting state.

WE shall write down a transport equation for the distribution function for the electronic excitations to study thermomagnetic effects in superconductors.

Changing in the Hamiltonian for a system of electrons in a magnetic field from the second-quantization amplitudes to the amplitudes of the electronic excitations, following Bogolyubov,¹ we find an expression for the Lorentz force acting upon an excitation

$$F = \frac{e}{c} [\mathbf{v} \times \mathbf{H}] \frac{\xi}{|\xi|},$$

where

 $\mathbf{v} = \partial \varepsilon / \partial \mathbf{p}, \qquad \varepsilon = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = (p^2 - p_0^2)/2m$

 $(\xi$ is the energy of an electron in the normal metal calculated from the Fermi surface, and Δ is the gap in the energy spectrum). The transport equation for electronic excitations, when there is a temperature gradient along the x axis and a magnetic field perpendicular to the thermal current, is then of the form

$$-\frac{\partial f}{\partial \varepsilon}\frac{\varepsilon}{T}v_x\frac{\partial T}{\partial x} + \frac{eH}{c}\left(v_y\frac{\partial f}{\partial \rho_x} - v_x\frac{\partial f}{\partial \rho_y}\right)\frac{\xi}{|\xi|} = -\frac{f-f_0}{\tau}.$$
 (1)

It was shown in reference 2 that the relaxation time τ is equal to $\tau = \tau_0 \epsilon/|\xi|$, where τ_0 is the relaxation time for the normal electrons. We assume that either the dimensions of the solid are less than the penetration depth, or that $\partial H/\partial z = 0$ [in the latter case one must average Eq. (3) given in the following over z].

Solving Eq. (1) by the method of successive approximations $(f = f_0 + f^{(1)} + f^{(2)})$ we find the additional terms in the distribution function which are caused by the presence of the temperature gradient and the magnetic field:

$$f^{(1)} = \frac{p_x}{m} \tau_0 \frac{\partial f_0}{\partial \varepsilon} \frac{\varepsilon}{T} \frac{\partial T}{\partial x} \frac{\xi}{|\xi|}, \qquad f^{(2)} = \tau_0^2 \frac{1}{T} \frac{eH}{cm} \frac{\partial T}{\partial x} \frac{\varepsilon^2}{|\xi|} \frac{\partial f_0}{\partial \varepsilon} v_{\psi},$$
$$f_0 = (e^{\varepsilon/kT} + 1)^{-1}. \tag{2}$$

The magnitude of the Righi-Leduc effect, which is well known to be the appearance of a temperature gradient perpendicular to the direction of the resulting heat current, is determined by the coefficient

$$L = \frac{\partial T}{\partial y'} \left/ \frac{\partial T}{\partial x'} H \right.$$

(the x' axis coincides with the direction of the resulting heat current). One can show easily that L = Q_V/Q_XH , where

$$Q_x = 2h^{-3}\int \varepsilon v_x f^{(1)} d\mathbf{p}; \quad Q_y = 2h^{-3}\int \varepsilon v_y f^{(2)} d\mathbf{p}.$$

From (2) we find

$$Q_y = 2h^{-3} \tau_0^2 \frac{1}{T} \frac{eH}{mc} \frac{\partial T}{\partial x} \int \frac{\varepsilon^3}{|\xi|} \frac{\partial f_0}{\partial \varepsilon} v_y^2 d\mathbf{p},$$
$$Q_x = 2h^{-3} \tau_0 \frac{1}{T} \frac{\partial T}{\partial x} \int \frac{\varepsilon^3}{|\xi|} \frac{\partial f_0}{\partial \varepsilon} v_x^2 d\mathbf{p}.$$

We have thus

$$Q_y/Q_x = \tau_0 \, eH/mc_* \tag{3}$$

This relation is independent of the magnitude Δ of the gap. The magnitude of the Righi-Leduc coefficient is thus not changed when the metal changes from the normal to the superconducting state and is equal to $L = \tau_0 e/mc$.

The Nernst-Ettingshausen effect which is the occurrence of an electric field perpendicular to the direction of the resulting heat current is clearly absent in the case of superconductors.

¹ N. N. Bogolyubov, JETP **34**, 58 (1958), Soviet Phys. JETP **7**, 41 (1958).

²B. T. Geĭlikman, JETP **34**, 1042 (1958), Soviet Phys. JETP **7**, 721 (1958).

Translated by D. ter Haar 97

352