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The asymptotic behavior of the four-vertex function in the infrared region is studied in the 
quantum electrodynamics of particles with zero spin. A procedure for removing the infra­
red divergences and summing the probabilities is discussed for the process of scattering of 
charged mesons by charged mesons with the emission of an arbitrary number of soft quanta. 

l. In spinor electrodynamics the methods for find­
ing the infrared asymptotic behavior have been stud­
ied thoroughly. 1- 4 In the electrodynamics of spin­
less particles there is an additional complication 
owing to the necessity of includin,g the four-boson 
interaction. 

As has been pointed out previously, 5• 6 the group 
of multiplicative renormalizations in scalar elec­
trodynamics has two invariant charges: e2d and 
hdko 1, where d, dM, and 0 1 are the scalar func­
tions that appear respectively in the transverse 
Green's function of the photon, in the Green's func­
tion of the meson, and in the part of the retarded 
interaction of mesons with the matrix structure 
Xa{3Xyo [X is the Kemmer matrix (cf. reference 
5) ]. In the infrared region the photon propagation 
function is regular, and therefore the invariant 
charge that describes the electromagnetic interac­
tion is a constant. 2 

The situation for the four-boson interaction is 
more complicated. As has been shown by Gor'kov, 7 

the Green's function of the scalar meson has an in­
frared singularity. If it turns out that this is not 
compensated by the singularities of the function 
0 1 in the expression for the second invariant 
charge, then to find the correct asymptotic behav­
ior of any function that depends on h one will have 
to take into account the behavior of the quantity 
hdko 1 in this region. As for the meson Green's 
function and the vertex part, their asymptotic ex­
pressions do not depend on the second charge h. 5•6 

The situation is different in the treatment of di­
agrams with four external meson lines. Let us 
first find their behavior in the infrared region in 
the low orders of perturbation theory. We confine 
ourselves to those parts of the diagrams of the re­
tarded interaction of mesons for which the matrix 
structure is determined by a direct product of X 
matrices. For such a structure infrared singular-

ities can be given only by the diagrams shown in 
Fig. 1. The required expressions are obtained by 
the calculation of the corresponding Feynman inte­
grals having singularities at k ~ 0 (k is the vari­
able of integration) when the squares of the exter­
nal four-momenta simultaneously approach m 2• 

A ~::~ ~>j 
a b c 

FIG. 1 

The calculation is made with the photon Green's 
function adjusted to d~ = 1. One then gets different 
expressions for the index of the infrared sin,gular­
ity, depending on whether the particles involved in 
the scattering process have like or unlike charges. 

We have 

where CM is a finite arbitrary constant, the un­
certainty to within which 0 1 is calculated. For the 
scattering of particles with like charges 

f ( ) 1 { s1 - 112 I 1 + V(s1 -1)1s1 
1 s1 s S3 = - - n --'---L;-===='='==' 

' 2 ' 41t2 y s1 (s1 - 1) 1 - V (s1 - 1) Is, 

+ I Szl + 'I• In 1 +VI Szl I (1 + I szl) 
V I Szl (1 +I s.l) 1-VI s,l I (1 + I Szl) 

+ !sal+'/• ln1+VIsall(1+lsai)} 
VI Sa I (1 +I sal) 1 -VI sal I (1 + I ssl) ' 

+ (I sal + 1lz)2 In 1 + V I szl I (1 + I szl) 
4ss VI sal (1 + I s•l) 1-VI Szl I (1 + I Szl) 

+ (I sal + 1/z)2 In 1 + VI sal I (1 + I sal) } . 
4sa VI sal (1 + I sal) 1- VI sal I (1 + I sal) ' 
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for the scattering of particles with opposite charges 
the expressions for f1 and f2 are obtained from 
Eqs. (2a) and (2b) by the interchanges s 1 ~ s 3, s 2 

- s 2• Here 

s1 + s2 + sa = I , s1 > 1, (3) 

(4) 

p and q are the initial four-momenta of the parti­
cles, and p' and q' are the final four-momenta. 

Thus it turns out that the four-meson function 
0 1 has a logarithmic singularity when the squares 
of the external momenta approach m 2• Further­
more, the coefficient of this singularity depends on 
the two independent momenta. Finally, an essen­
tial fact is that 0 1 depends on h, so that in the 
summation of the maximum powers of the divergent 
logarithms it is important to take account of the be­
havior of the invariant hdif 0 1 in the infrared 
region. 

2. Let us derive the functional and differential 
equations for finding the infrared asymptotic be­
havior of the function 0 1• Because of the existence 
of the condition (3) and the dependence of the coef­
ficient of the logarithm on the momenta Si it is 
impossible to normalize 0 1 to the same normali­
zation momentum for all three independent squares 
of momenta. Therefore the normalization condi­
tion for 0 1 must be chosen in the form 

0 1 (P' -.m• , s1 , s,_, sa, e•, h) I = I. 
m P'=A• (5) 

s1 =s(~) 

Using the given condition to fix the arbitrariness 
contained in 0 1, we write the function normalized 
to unity in the form 

( p2 - m• A 2 -m2 (o) (o) (0) 2 h) 01 = 01 ~, ~' St, s2, Sa, sl ' s2 ' sa ' e , , 
(6) 

so that the condition (5) takes the form 
(5a) 0 ( A 2-m2 A • - m2 s~ol s~o) e2 h \ = I • 

1 m2 ' m2 ' t ' t ' ' ) 

Using the fact that in the infrared region d = 1, 
we get a functional equation for the normalized 01: 

( p2 -m2 /.' 2 -m2 (1) 2 ') 
X 0 1 ~ , m• , S;, S; , e , h , (7) 

where 

' 2 ("'' -- m• 2 h) h =hdM J..•-m•, e, 

(
/.' 2 -m2 )..2 -m2 (I) (o) 2 \ 

X01 --2-,--2 -, S; , S; , e, h), m m , (8) 

A.' 2, s~t) is the normalization point for the second 
function 0 1 in the right member of Eq. (7). The 
relations (7) and (8) are obtained by substitution of 
Eq. (6) into the system of equations of the renor­
malization group, Eq. (2) of reference 5. 

The functional equation (7) is very cumbersome. 
To simplify it, we represent 0 1 in the following 
way: 

(
)..2 - m• ). 2- m• (o) 2 h) =01 ~,~S;,S; ,e, 

(p•-m• /.2 -m2 2 ) X 01 ~, ---,nz:-, S;, S;, e , ha.,, 

where 

t.•-,f,_• t-•-m2 (o) 2 ) 
ha. =h01(~, ~· S;, S;, e, h, 

dM(l, e2 , h)= I. 

(9) 

The equation (9) can be obtained by setting A.' 2 = A. 2, 

s~0 = si in the right member of Eq. (7). The con­
venience of this representation is that the factors 
in the right member of Eq. (9) are sei?arately nor­
malized to unity, the first for Si = sf0 ) and the sec­
ond for p2 = A. 2• Therefore in virtue of the fact that 
0 1 is a homogeneous function of the momentum 
arguments we can always set 

(p•-m• "l.'-m2 2 ) _ ~ (p2 -m2 2 ) 
D1 ~·~·s,,s,,e,ha. =01 1.•-m•'s;,e,ha., 

so that Eq. (9) takes the form 

( p2 -m2 )..2 -m2 (o) 2 ) 01 ---,nz:-• ~· S;, S; , e, h 

(
/..2 -m2 ).2 - m• (o) 2 ) =01 ~·~,s;,S; ,e,h 

~ (p'-m" 2 ) 
X01 )..•-m•' Si, e, ha. . (10) 

We emphasize that the infrared singularity is en­
tirely contained in 0 1. 

Representations analogous to Eq. (10) can also 
be obtained for the other two functions 0 1 involved 
in Eq. (7). Making the respective replacements 

2 2 (1) 2 2 (0) (1) . 
p - A.' , si - si and A. - A.' , si - si m 
Eq. (10), we get representations of the type (10) for 
the firstand second factors in the right member of . ( 

Eq. (7). Substituting in Eq. (7) all the relations of 
the type (10) obtained in this way, and then setting 
s~i) = si in the resulting equation and cancelling a 
common factor, we find a functional equation for 
the function D 1• Introducing the dimensionless 
variables x = po/;..2, y = mo/A.2, t = A.'o/;...2, we get in 
the usual way a Lee differential equation of the fol­
lowing form: 



342 V. A. SHAKHBAZYAN 

a~(x-y 2 ) 
CJX 01 1_ y, S;, e , ha 

= _1_ 01 (xi- Y S;, e2, ha.) 
x-y -y 

xF(s;,e2, hatpG=~· S;, e2, ha)). 

F (s;, e2 , h,.) = [~ 0 1 (~. s;, e2 , ha.)J~~1 , 

process. It is well known that in low orders of per­
turbation theory after the removal of the infrared 
divergence one gets an incorrect dependence of the 
scattering cross section on the maximum energy 
of the soft photon that is emitted. 8 The simplest 
way to get the correct result is to apply the method 
of the renormalization group to sum the probabili­
ties of processes with emission of arbitrary num-

h h d2 (x-y 2)~0 (x-y 2 t.) 
a.Cfl = " M J- Y' e 1 1-Y' S;, e '"'"- . (11) bers of long-wavelength photons (cf. reference 4). 

In a similar way one derives an equation for the 
second invariant charge in the infrared region for 
the four-vertex function: 

i}iJ_ ha.'f (x1 - Y, S;, e2 , h") = - 1- h"'f (x1 -¥., S;, e2 , ha) 
x -y x-y -y 

x <D (s;, e2, h .. 'f G = ~, s;, e2 , h" )) , 

<D (s;, e2 , hoc)= [~'f (~, S;, e~:. h")l~1• (12) 

Thus to find the infrared asymptotic behavior 
of the four-vertex function it is necessary to solve 
the equations (11) and (12) simultaneously. 

3. Let us first solve Eq. (12) by using for <I> 

the expression obtained in low orders of perturba­
tion theory. We get 

(13) 

(14) 

Then taking F from the perturbation-theory 
calculations and substituting the value of hacp from 
Eq. (13), we get the solution of Eq. (11) in the form 

~0 (X- y . 2 h ) = _1 [ I x- y le'f, (s;) _ I x- y \e'f4r.'] 
1 1- y' s,, e ' " 1- a 1- y a 1- y · 

(15) 

Thus the existence of an infrared singularity of the 
function 0 1 is determined by the sign of the func­
tion f1 ( si ), which is given by Eq. (2a). 

For f1 ( Si) < 0 and in the region x ""' y the func­
tion 0 1 takes the form 

P1 (x-y . 2 h )~-1-~~-y~-e'if,(s;)l (16) 
L_1 1- Y' s,' e ' "' .~ 1 -a 1 - Y • 

4. So far we have been considering the asymp­
totic behavior of four-vertex diagrams in the infra­
red region. A matter of much interest is the pro­
cedure for removing the infrared divergence from 
the probability for the meson -meson scattering 

a b 

Here, since in scalar electrodynamics the renor­
malization group is a two-charge group, and the 
second invariant charge has an infrared singularity 
[cf. Eq. (13) ], the question arises as to how one is 
to remove the divergence that can be introduced 
into the probability of the process on account of the 
second invariant charge. 

Let us first examine the procedure for removing 
the infrared catastrophe in low orders of perturba­
tion theory. For this we shall use the method of 
generalized diagrams for the probabilities of the 
process that has been suggested by Abrikosov. 1 In 
the present case we must consider three separate 
sums of generalized diagrams, each of which does 
not contain an infrared divergence. All three sets 
are shown in Figs. 2, 3, and 4. The diagrams of 
Figs. 2a, 3a, and 4a represent the zeroth approxi­
mation of the scattering cross section for two me­
sons. The diagrams of Figs. 2b, 3b, and 4b repre­
sent the next approximation with respect to e 2 for 
the pure elastic scattering cross section. Finally, 
Figs. 2c, 3c, and 4c give the lowest approximation 
for the process of meson-meson scattering with 
emission of a soft photon with energy not exceed­
ing Wmax· 

In calculating the contribution of each diagram 
we must take into account the possible interchanges 
of the initial and final momenta of the particles. 
The diagrams of type c have not all been drawn, 
since they are very numerous. The diagrams 
shown represent the mutual scattering of particles 
of like sign. The total probability of the process 
of meson-meson scattering with the emission of an 

a b c 

FIG. 2 

c 

FIG. 3 
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a b c 

FIG. 4 

arbitrary number of soft photons can be written in 
the form 

M(w, s1 , e2 , h)=h2M1 (w, s;, e2 , h)+he2 M2 (w, s;,e2 ,h) 

+ e"Ma (w, s;, e2 , h), (17) 

where the first terms of the expansions of M1, M2, 

and M3 are given respectively by the diagrams of 
Figs. 2, 3, and 4. 

Since the emission of soft quanta is possible 
only owing to electromagnetic interactions, the 
breaking up of the probability into three terms as 
shown in Eq. (17) is entirely unambiguous. For 
example, a term ~ h2e 2 ln ( w/m) can formally be 
assigned to either the first or the second term in 
Eq. (17). But if in the first term it gives a physi­
cally reasonable correction to the zeroth approxi­
mation for the process, proportional to e 2 ln ( u/m ), 
in the second term it would give a correction 
~ h ln ( w/m ), which makes no sense, since the 
emission of a soft quantum cannot occur as a con­
sequence of the four-boson interaction. We now 
note that the expansion of each term Mi in a power 
series in the interaction constants begins with 
unity, that is, they are all of the same order and 
can be separately normalized to unity. 

We now assume that the constants e 2 and h sat­
isfy the requirement 

(18) 

In this approximation the second and third terms 
in Eq. (17) are small in comparison with the first, 
and we can drop them. Following the work of 
Blank4 we get for the function M1 ( w, Si, e2, h) 
the group equation 

MI(w, s1, e~, h2 ) = z;;-2 z2M1 (w, s,, e;, h1 ). (19) 

Introducing normalized functions and repeating the 
arguments of Sec. 2, we get the following Lee dif­
ferential equation: 

(}M1 (x, s,, e2)jdx = x-1M1 (x, s1 , e2 ) ~~ (si. e2), (20) 

where 

~1 (s1, e2) = [~ M1 (;, s,, e2)J~=1 , ro 
X=·-, 

roo 

There is no dependence on the second charge h, 
since the lowest approximations ID1 1, which are 
used to get the main term of the renormalization­
invariant expansion M1 (x, si, e 2, h) do not con­
tain the constant of the four-boson interaction. The 
first two terms of the expansion h2M1 are calcu-

lated from the diagrams of Fig. 2a, b, c and are of 
the form 

h2Mi2 ) (x, s,, e2) = h2 [I + rp (s1 , s2 , Sa, e2) In x]. (21) 

Here 

e2 [ s1 - 1/z 1 + V (s,- 1)/sl 
<:p (sl, s2, Sa, e2) = 2rc" 1 + 4 V s, (s,- 1) In 1-V(s,- 1)/s, 

, 4 1 /z + I Szl In 1 + VI SzJI (1 + I Sz I) 
1 Vls2 1(1+/sz/) 1-Vlszl/(1+/sz/) 

+ 4 1/ 2 +I sal In 1 +VI sal/(1 +I sa I)J (22) 
YJ sal (1 + I sa J) 1-V/ sal I (1 +/sa I) 

for the scattering of particles of like signs. 
Solving Eq. (20) by the use of Eq. (21), we get 

MI(wjw0 , S;, e2) 

Thus one gets the physically correct dependence 
of the cross section on the maximum energy of the 
soft quanta that are emitted. 

If we now replace Eq. (18) by a different condi­
tion, h « e 2 « 1, then in Eq. (17) the third term 
is the largest, and we can get for M3 a result ana­
logous to Eq. (23). The investigation of the inter­
mediate case, for which h ~ e 2 « 1, encounters 
serious difficulties. 

In conclusion the writer takes occasion to ex­
press his deep gratitude to D. V. Shirkov, under 
whose direction this work was done. The writer 
is also grateful to I. F. Ginzburg, L. P. Gor'kov, 
and L. D. Solov'ev for interesting discussions. 
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