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The velocity dependence of the inelastic collision cross sections for atoms and ions is exam­
ined in the case of pseudo-intersection of the levels of the system of colliding particles. The 
time dependence of the electron wave functions is taken into account in terms of the radius 
vectors of the nuclei. The perturbation matrix element in the Landau-Zener formula includes 
the usual stationary separation of the levels and also a term that takes into account the indi­
cated dependence of the electron wave functions on the time. Under certain conditions the 
cross section vs. velocity curves may have two peaks. 

WE assume that the nuclei of the colliding atoms 
move in a straight line and uniformly in the sense 
of classical mechanics. Then the probability of 
excitation of the atoms is determined by the im­
pact parameter of the collision, p, and by the 
velocity of the relative motion of the nuclei, R = v. 

If v « e2/n, it is natural to represent the wave 
function 'lr of the atomic electrons in the form of 
an expansion in the molecular wave functions Xn 
with the nuclei stationary. The coordinates of the 
nuclei, Ra and Rb, are contained as parameters 
in the Hamiltonian and in Xn. If R = I Ra - Rb I 
- oo, the functions Xn are transformed into prod­
ucts of the atomic wave functions corresponding 
to the given atomic state with index n ( the products 
differ in the transposition of the electrons between 
the atoms ) . The eigenvalues En of the electron 
energy are also functions of R. The curves En ( R ) 
and En'( R) can, in principle, intersect. Most fre­
quently, however, we seemingly encounter an inter­
section of these curves at the point R = R0 where 
En - En' so to speak vanishes and reverses sign on 
going through R = R0• In fact, the curves En ( R) 
and En'( R) pass very close to each other and then 
diverge again in such a way that En- En' does 
not reverse its sign as R goes through R0• Such 
a behavior of En(R) is called a pseudo-intersec­
tion of the levels. 

If there is no intersection or pseudo-intersec­
tion of En ( R) and En' ( R), then the probability of 
the (n, n') transition is exponentially small at 
small v. It is proportional to exp ( - v0 /v ) ; the 
greater I En -En'!, the greater v0• Therefore, 
in the case of slow collisions, the (n, n') transi­
tions are of practical importance only near the 
intersection or pseudo-intersection points of the 

levels En and En'. The theory of such transi­
tions, given in the papers of Landau1 and Zener, 2 

seems to us insufficiently complete.* We shall 
show that the intersection of such transitions, ex­
pressed as a function of the velocity v, has in 
general two maxima. 

In the case of slow inelastic collisions of atoms 
or ions, we can consider in the pseudo-intersection 
of the levels only the transition between the two 
terms near the "intersection" point ( R = R0 ). 

The complete function of the system, 'lr ( Ra, 
Rb, ... ri ... ) , satisfies the equation 

i1iiJ'Yjat = H'¥. 

Let us expand this function in a series 
00 

1f" = C1x~ + C2x~ + 2J Cnxn. 
n~3 

(1) 

(2) 

where x~ and x~ are orthonormal to each other 
and to functions Xn when n 2: 3. They are ex­
pressed linearly (see below) in terms of x1 and 
x2, which satisfy, for fixed nuclear coordinates 
Ra and Rb (n = 1, 2 ... ), the following equation: 

H (Ra. Rb •... , rt .. . ) Zn (Ra. Rb •... , r,. ... ) 

=En(R)X,n(Ra. Rb, ... rf ... ), (3) 

where R = I Ra - Rb I and r i are the radius 
vectors of the electrons. 

For the coefficients Cm we obtain 

(4) 

where (a/at >kn = (a/at >mn• Ek = Em, and 
Hmn = 0 if m > n and n > 2. If m :s 2 and 

*This theory is briefly developed in the book by Landau 
and Lifshitz. 3 
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n ~ 2, then H11 = E~, H22 = E~, and H12 = H21 = V. 
Integration is carried out in the matrix elements 
only over the electron coordinates. 

If we put 

and introduce a monotonic function q ( R) such 
that q2 ( R0 ) = 1/2, q2 - 1 when R » R0 and 
q2 - 0 when R « Ro. then this function will 
satisfy the relations 

qY1-q2=V/(E1-E2), (6) 

£~2= (£1 + £ 2)/2 ± (2q2- 1 )(£1- £2)/2. (7) 

If q tends to unity or to zero, then E~2 tends 
to E12 or to E21 , while x~2 tends to x12 or x21 . 

In the case of a pseudo-intersection of levels, 
the difference E1- E2 ( E1 > E2) reaches a mini­
mum at a certain distance R = R0 between the 
nuclei of the colliding particles. Then, putting 
2V = ( E1 - E2 >min ~ const, we obtain the inter­
section of the levels E~ and Eg. It is obvious that 
if ( E1 - E2 >min is small, the perturbation of V 
will also be small. 

Furthermore, neglecting in (4) the transitions 
of the system to the states with n > 2, we arrive 
at a system of equations 

in C1 = E~C1 + (V + K~'2) C2, 

inC2 = (V + K~2)*C1+ E~C2. 

This system differs from the analogous Zener 
equations2 in the presence of the quantity K~2 . 
This term has the form 

~ ax1 r· . . 
K~2=- in~ X~(jf d-r =- ifi ~X~ (R. Va+ R.bVb)x~d-r 

(8) 

=-in(RaVa+RbVb)~2 • (9) 

It takes into account the dependence of the electron 
wave functions x0 on the time through the radius 
vectors of the nuclei, which act as parameters. 

The process is thus adiabatic and the matrix 
element K~2 can be considered constant in the 
vicinity of the point of "intersection." Actually, 

(9a) 

Since 

o d Eo o) Fu = dR ( 1- Ez . 

The difference K12 - K~2 is a function that as­
sumes a large value at the point of pseudo-inter­
section and diminishes rapidly with increasing 
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distance from this point. The difference E1- E2 
changes rapidly near R = R0• This is due to the 
singularity of the quantities x1 and x2, since the 
Hamiltonian H itself does not have any singular­
ity as a function of R. It is therefore natural to 
assume that ( 8/8R)~2 is a smooth function, since 
E~ and Eg are smooth functions, wher~as ( 8/8R)12 
includes a rapidly varying term VF~2 I ( E1- E2 )2 

[if we neglect ( 8/8R) 12 , then in general there will 
be no such transitions ]. 

We put 

(10) 

The solution of the system (8) can be found in 
the papers by Landau and Zener .1•2 For the prob­
ability of transition of the system from state 2 
into state 1 we obtain the Landau-Zener formula 

W = 2e-5 (1-e-5 ), 

S = 2rr IV' 1
2/nVR I F~2f· 

(11) 

(12) 

Here vR = R is the radial component of the rela­
tive velocity of the particle, while F~2 = d ( E~- Eg )/ 
dR. Formula (11) was derived under more general 
assumptions, with allowance for the dependence of 
the electron wave functions x~ on the time through 
the parameters Ra and Rb. 

We note that the matrix element K12 has, gen­
erally speaking, Galilean invariance. Actually, 

. 1 . . 

RaVa + RbVb= 2 (Ra- Rb)(Va- V'b) 

The first term of the expression in the right half 
has Galilean invariance, while the second does not. 
It is easy to show that 

(Va + Vb)~2 = (Va + V bh2= n-2mD12 (£1- £ 2), (13) 

where m is the electron mass and D is the dipole 
moment of the electrons. Therefore, in the case 
when E1- E2 ~ 0, the matrix element K12 is ap­
proximately Galilean-invariant. 

It is seen from (10) that the matrix element V' 
consists of a real and imaginary part. With allow-
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ance for (9) and for the fact that V = % ( E1 - E2 )min 
= ~E/2, the square of the modulus of this matrix 
element is 

V' [2 = [(~£)2/4 + (!i (RVR)~2 ) 2 ]R~R,= (~£) 2/4 +n2 v7,k2 , 

k = (V R )f:c• (14) 

where R is the radius vector joining the nuclei 
and Vk is the component of the velocity v in the 
direction of the vector k. 

We thus obtain for S instead of (12) the ex­
pression 

S'=ajvR+bvUvR, v"~vR~v=/i~/. (15) 

a =rt (~E)2j2!i [F~2 /, b = 2rtlik2/[ F~2 j. (16) 

From an analysis of the dependence of the prob­
ability of transition w on the velocity v we see 
that the curve of this dependence has two maxima 
at values vk-fab /vR = avk/VR < 1/2 ln 2; at values 
CI'Vk/VR ~ 1/2 ln 2, both maxima merge into one. 

The total effective cross section of the process 
is 

Ro 

cr = 2rt ~ wpdp, 
0 

where p is the collision parameter. 

(17) 

We note that there are two possible types of 
transitions (A is the projection of the orbital mo­
mentum of the electrons on the axis joining the 
nuclei): 1) ~A= 0 (then Vk = VR); 2) ~A=± 1 
(then vk = v cp). For both cases we obtain one ex­
pression for the effective cross section u: 

l 

a = 2rtR~ ~ 2e-AI~-B~( [ - e-A!~-B~) 1Jd'Y), (18) 
0 

and if ~A= 0, then 

A= rxv 0jv, 

while if ~A=± 1, then 

A= rx(vo!v+vfvo). 

Here 

B = -avjv0 • 

v0= Vajb = ~Ej2!ik, a= rt~Ek/ [F~2I· 

(16a) 

(16b) 

The parameters A and B, generally speaking, 
vary within the limits 0 ::::: A ::::: + oo and - oo < B 
< + oo. In addition, A+ B > 0 when ~A = ± 1. 

We have calculated the cross section of the 
process by means of formula (18) for those values 
of the parameter a, at which the curves w = w ( v) 
have two maxima, i.e., a < 1/2 ln 2. In these cases 
the cross section u (v) also has two maxima with 

respect to the velocities; the two maxima are equal 
when ~A = 0 while the second maximum (at the 
higher velocity) is smaller than the first when 
~A = ± 1. The smaller a, the more separated are 
these maxima. It is obvious that when a « 0.3 
the first maximum in (15) is due to the first term 
at low velocities. This first term, as we have 
seen, is due to the minimal stationary splitting of 
the levels (spin-orbit and polarization effects). 
The second maximum is due to the second term 
in the expression for V' at high velocities. This 
term takes into account the dependence of the 
wave functions of the electrons on the time through 
the parameters (radius-vectors of the nuclei) 
i.e., it includes the interaction between the orbit 
and the motion of the nuclei. 

When a « 0.01 the two maxima are so sepa­
rated, that in calculating the cross sections with 
these values of a, it is possible to consider in 
practice, for each of the maxima, either the first 
or the second terms in the expression (14) re­
spectively. 

References 4 - 6 consider several charge­
exchange processes. In calculating the cross 
sections of these inelastic processes as functions 
of the velocity, these references took into account 
this dependence only in the first term of (14). Con­
sequently the curves given there have only one 
maximum. 

However, if a reaches a value 0.1, u ( v ) 
varies significantly even in the region of the first 
maximum. In half of the cases calculated by Bates, 
Moiseiwitsh, and Boyd, 4 a is found to be of order 
0 .1. For illustration, we give the plots of u ( v) 
for a= 0.1 and ~A= ±1 and 0 (Fig. 1) and for 
a = 0. 25 and ~A = 0 (Fig. 2). In the last case 
we see that u ( v) is approximately constant in 
the interval 0.6v0 < v < 6v0• 
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