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The production of 1r mesons in peripheral collisions between y rays and nucleons is investi
gated. The photoproduction amplitudes are calculated using one-meson and two-meson ap
proximations. The dispersion relations as well as the unitarity condition for the photoproduc
tion amplitude and its analytical properties were used for this purpose. The deduced rela
tions together with the corresponding experimental data make it possible to calculate the 
( Y71'7r7r) vertex function near the point t = 4p,2, and the pion-nucleon coupling constant. 

1. INTRODUCTION 

THE theory of processes involving strongly inter
acting particles has recently met with considerable 
success by making use of the analytical properties 
and the unitarity of the scattering amplitudes. It 
was shown1•2 that, for a number of processes, it is 
sufficient to know the properties of the scattering 
amplitudes in the region close to their nearest 
singularities in the transferred momentum. Okun' 
and Pomeranchuk3 showed that the nearest singu
larities correspond to the largest impact param
eters, and this fact served as a basis for a method 
of calculation of the amplitudes corresponding to 
large values of orbital angular momentum. 

In the present article, this method is used for 
the study of peripheral collisions of photons with 
nucleons accompanied by meson production. The 
basis of the method is the dispersion relation for 
transferred momentum.4 For the process in ques
tion, the relation is 
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A ( t) = A ( ) + _a_,_ + ~ \ A1 (s, I') dt' 
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where A ( s, t) is one of the invariant photoproduc
tion amplitudes (in a general case, photoproduction 
is described by four amplitudes 5), a 1 and a 2 are 
constants, and 

-s = (Pt + kt)2 = (P2 + k2)2, - t = (P2- Pt)2 = (kt- k2)~, 

u = 2m2 + p.2 - s - t, 

where p1 and p2 are the initial and final four
momenta of the nucleon, k1 is the momentum of 
the photon, and k2 the momentum of the 1r meson. 
The coefficients of the amplitude expansion in 

terms of Legendre polynomials 
1 

az = ~A (s, t) P1 (x) dx 
-I 

(where K =cos(}, and (} is the angle between p1 

and p2 in the c.m.s.) can be expressed in terms 
of Legendre polynomials of the second kind 

1 1. P1 (x) 
Ql(xo) = 2 ~ Xo-xdx. 

-1 

Using the relation t=p,2 + 2wk(K-1/v), where p, 
is the 1r -meson mass, w and k are the momenta 
in the c.m.s. of the photon and meson respectively, 
and v = k/...f k2 + p,2 is the meson velocity, we 
obtain 

co 

at= - =~ Qt ( ~) + ! i AJ(s,t') Qt(x') dx' 
)( 

I ,- ... ' (2) 

If, for a given z, we have QZ ("K) « Qz (ljv), then 
the main contribution is due to the first '<polar) 
term in the scattering amplitude. The second 
term is important when a 1 = 0. The following two 
terms in Eq. (1) will not be considered since they 
correspond to still larger arguments of the func
tion Qz. 

2. ONE-MESON APPROXIMATION 

The polar term of the photoproduction ampli
tude can be obtained directly from the Feynman 
diagram in Fig. 1, corresponding to the exchange 
of one virtual meson. The vertices of this diagram 
are determined by the physical charge6 of the 
meson, e, and the nucleon-nucleon interaction 
constant, g. We shall normalize the amplitude F 1 

so that da = IF 1 12 do in the c.m.s. We then have 
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~ 
FIG. 1 

(3) 

where x is the unit vector of the photon polariza
tion, w is the photon momentum, k is the meson 
momentum, W = E1 + w = E2 + k20 is the total 
energy (all in c.m.s. ), m is the nucleon mass, e 2 

= 1/137, and g2 = 0.08 (2m/!-! )2; ui are four
component spinors normalized so that UiUi = 1. 
Expressing these spinors in terms of two-compo
nent unit spinors Vi, we obtain F 1 = v!R1v 1, where 

R = !JL VI V (m + £1) (m + £2) ~!)___ 
1 y2 m kmW 1; v --" 

X------(- ak, ckt ) 
m + E, m + Et · 

(4) 

It should be noted that Eq. (3) does not exhibit the 
transversality property. However, the longitudinal 
part of Eq. (4) does not contain a pole. 

In order to find the amplitude corresponding to 
a state of the nucleon-meson system with a given 
angular momentum j and parity (- 1 )1 + 1 , it is 
necessary to expand R 1v1 in terms of spherical 
spinors7 

R1v1 = ~a}))u D;tM (k2 / k). 
jiM 

Using Eq. (4) and the explicit expressions for 
Qjl M we obtain 

(5) 

<1> eg y;-. /T ~~ E ) ( + E ) 
a/lM = -----wwv 00 J' (m + 1 m 2 

{_m_./ l (l + 1) (-l)'h-vci"'f 
X m+EtV 21+1 ll.f,v 

where l' = 2j - l; A.= ± 1 correspond to right- and 
left-handed polarizations of the photon; v = ± %; 

'M 
and C~A.1/zv are the vector addition coefficients. 
The indices A. and v can assume only one value 
for a given M: forM=±%, A.= ±1, v =±~;forM 
= ± ~. A.=± 1, v = :F)t2. The values of the coeffi-

• <1> • • T bl I cwnts ajZM are g1ven m a e . 
The polar term of the type discussed is con

tained only in the photoproduction amplitude of one 
type. Firstly, it is absent in the neutral 1r-meson 
production amplitude. Secondly, it corresponds to 
only one of the four possible types of the amplitude 
variation with the polarization of the nucleons and 
of the photon. [It can be seen from Eq. (3) that, 
e.g., F 1 vanishes if the meson moves in the direc
tion of motion of the photon.] In order to find the 
other amplitudes, and also to estimate the accu
racy of the one-meson approximation, it is neces
sary to analyze the integral term in Eq. (1). An 
analogous study in the case of nucleon-nucleon 
scattering was carried out by Galanin, Grashin, 
Ioffe, and Pomeranchuk.8 

3. TWO-MESON APPROXIMATION 

In order to study the integral term in Eq. (1), 
it is necessary to make use of the fact that, for 
t >4m2, s < 0, and u < 0, the quantity A ( s, t) 
represents the amplitude for the production of a 

(1) 
TABLE I. Values of the coefficients ajZM 

in units of 1o-4eg/~-t 

w,Mev 152.5 178_. 7 244.5 
------- --

1/v 2 1.5 1,2 

[ =c2 137 1282 479 
a(l) -- a(l) 1=3 32.6 93.5 215 l + '/,, l,- '/,- l+ 'f,,l, •;, 

1=4 8.14, 32.8 104 
1=5 2.08 11.9 5L3 
1=2 298 607 1020 

-- a~1)_ '/,. l, -'/, =-a)~'f,,l,'/, 1=3 56.7 161 365 
1=4 12.7 51.0 158 
1=5 3.06 17.3 73.8 

1=2 85.9 159 214 
- ajl2_ '/,, t, -';,=-a)~'f,.l,'l• 1=3 24.0 63.1 120 

1=4 6.55 24.6 G5.7 
1=5 1.78 9.54 35.8 

1=2 88.6 163 220 
a<l) -a< 1> 1=3 23.5 62.0 117 - l + 1j,, l, -'/,- t+ '/,,1, 1/, 1=4 6.27 23.6 62.7 

1=5 1.67 8.98 33.7 
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nucleon-antinucleon pair in a photon-meson colli
sion: y+ 1r- N+ N. Inthatrange, At(s, t) 
= ImA (s, t), and, in order to find this, one can 
use the unitarity relation 

2Im(NN[y:rt) = ~<n/NN><nlr:n)', 
n 

where <b I a> denote the elements of the scattering 
matrix T = - i ( S -1 ), which differ from the cor
responding amplitudes by normalization factors. 
The function A1 ( s, t) calculated from this relation 
is analytic, and can therefore be continued in the 
region t < 4m2• In the region 4f.1.2 < t < 9f.1.2, the 
only state n is the two-meson state, and the uni
tarity condition is represented by the diagram in 
Fig. 2. In this diagram, the vertices represent the 
analytical continuation of the amplitudes of anni
hilation NN- 1r1r or of scattering 1rN- 1rN, and 
of the amplitude of photoproduction of mesons on 
mesons y1r- 1r1r. Let us introduce the notation 

- (4) v'" (N N /art) = (2rr)4 o (PI+- kt- P2- k2) mB I 2 r E1E2(t)k2o. 

( rrrr I N 11[) = (2rr )4 o<4J (Pt + f 1 - P2 - f 2) mB<~> I 2 VE;E;.rf) 1dJ 2 

(rtrt larr)' = (2rt)4 o(4l(kt + f2 -k2- ft) B(Y) 14 Y dJtdJ2(t)k2o· 

FIG. 2 

where p1 and p2 are the nucleon four-momenta, 
E 1 and E 2 the nucleon energies, k 1 is the photon 
four-momentum, k2 is the meson four-momentum, 
w and k20 are the photon and meson energies re
spectively, f 1 and f2 are the four-momenta of the 
intermediate mesons, and dJ1 and £2 their ener
gies. The unitarity condition can now be written in 
the form 

8 =-1_,/t-4p.2 \s<Y)B(n)d 
1 32~t2 Jl I ) o, 

B1 = Im B for t >4m2 , s < 0, u < 0, (7) 

where do is the solid angle element in the c.m.s. 
corresponding to the annihilation channel Pt = P2• 
f 1 = £2, k1 = k2. Introducing the invariants 

v ... ;-t 
Z = I - I'' Jl t -4m2 ' 

(which correspond in the c.m.s. to the cosine of 
the angles between the vectors Pt> k1; Pt· ft; ft, kt) 
where, moreover, 

v=PK, '~1 =Pf, 

(P = Pt + P2. K = kt + k2, f = ft + /2) 

we can write Eq. (7) in the following form: 

8 = _1_-. jt- 4 .. • 1\ 8 (Y) s<~> 
1 3z"• r , j) 

(8) 

where the integration is carried out over the area 
of the ellipse determined by the zero of the expres
sion under the radical sign. 

The structure of the amplitude B(y) is uniquely 
determined by the condition that it should be a 
pseudoscalar quantity containing linearly the 
photon polarization vector x and depending on the 
vectors K, f, and q = k1 - k2• The only such quan
tity is 

B<Yl = e~~l.p. x~q{JKI.f1,A(Y) (v2, t), (9) 

where A (y) is an invariant. 
The amplitude B(7r) has the following general 

form: 

B<n) = u2 {iA<1l {v1 , t) + f A<•> (v1 , f)} U1· (10) 

In Eq. (9) and (10) we have omitted the dependence 
on isotopic variables. This dependence is deter
mined by the fact that two intermediate mesons 
should be found in the state with isospin T = 1. 
In fact, for T = 2, the meson could not have been 
emitted by nucleons; for T = 0, they are in an 
even-charge state and therefore could not have 
been emitted by a photon with its consecutive 
transformation into a 1r meson (which also has an 
even charge). For T = 1, all three mesons are 
in an odd-charge state, and the change in the iso
topic state of the nucleon is determined by the 
charge of the emitted meson. 

We thus have 

t)fp. 

(11) 

The quantity B1 is used for calculating an integral 
of the type of Eq. (2), in which the region near the 
lower limit t = 4~-t2 makes the important contri
bution. Since, in Eq. (11), the interval of integra
tion over v1 (- 1 :s Zi :s 1) is of the order of 
-../ t- 4f.1.2, we can use, instead of the functions 
which do not have singularities near this region, 
the first terms of their expansion at the point 
Vi= 0. From these considerations, we shall make 



298 V. B. BERESTETSKII and E. D. ZHIZHIN 

the substitution 

A(~) ('12, t) = A(Y) (0, t), 

(A <1> ( 0, t) = 0 because the function A (1) is odd 
with respect to v1.) Such an approximation is, 
however, not applicable for the function A <2 > ( v 1, t), 
since that function has no pole for v1 = ± ( t- 2p,2 ). 

Separating the polar term explicitly, let us write 
A <2> in the form 

A<2l (·1 1 , t) = A<Pl (v 1 , t) + A< 3l (0, t), 

A(p) (v1 , t) = 4rrg2 ( 1 2 \ + ~, 2 
1
2 , ) • (12) 

- }" - v1 '· - }" T V1 

Thus 

- S <1r I X (0, t)u2 liA (0, t) .l fp.v 1do 

+ A(3)(0, t)~f,,}do+ ~fpfA(P)(vJ, t)do}u1 • 

In view of the fact that the integrand in Eq. (13) 
does not depend on v2, we have 

1 

~ do . . . = 2rr ~ dz1 •••• 

-1 

and the integration can be carried out easily. 

(13) 

The amplitude A(Y) in Eq. (13) represents the 
physical amplitude for the photoproduction of 
mesons on mesons. Unfortunately, it is not possi
ble to say anything definite about its value. An 
analysis of the meson photoproduction on nucleons 
and a comparison with the results of the present 
calculation may enable us to find its value. It 
should be noted that, in effect, our results will 
depend on the value of A(y) at the one point t 
= 4p,2, IJ = 0. 

The quantities A0 >' and A<3> represent the 
amplitudes for the scattering of mesons on nu
cleons in a non-physical region as a function of 
both variables t and v1. They were calculated in 
reference 8 by using the dispersion relations and 
experimental data. It should be noted that the pro
cedure of analytical continuation of A <O and A <3> 
from the physical region t < 0 used in reference 8 
can be carried out only up to the region close to 

• 

t = 4J.l2• Our results will therefore be correct only 
to that extent in which the region close to the lower 
limit will be the only important one in integrals (2). 
The results obtained in reference 8 are as follows: 

A'1l' (0.4 ;J.~) cc~- 0.029g2;m:J. 2 , 

A<'31 (0.4:J. 2 ) = 0.025g2/2:J.2 • 

These coefficients are small, and, since the inte
grals next to them in Eq. (13) are pr~portional to 

( t - 4J.l2 ) 3/2 the contribution of these terms to B 1 

will be small. We may, consequently, limit our
selves to the polar term in meson scattering A(P). 
Thus 

(14) 

Carrying out the integration in Eq. (14), we obtain 
the following expression for B 1 

1 A(Y) (0.4p.2) -

B1 = -4 g2 ,1 e"-oA,z"-qllKi.u2 
2iP-m [(1 + x) (1- e2- e2x)] • " r 

X (c11p. + c2PJ3 ) u1 , (15) 

where 

4 . 2 j e(1+2x)[(1-e2-e2x)x]'f, 
c1 = tp. ,-· 2(1-e2 -e2x) 

-1 2 (x (1- e2 - e•x)]'l• 
+ x tan e (1 + 2x) 

+ _::_ (1 + 2x)2 tan-1 2 (x (1- e2 - e2x)]'/• } 
4 (1- e2 - e2x) e (1 + 2x) ' 

ie 2 f _ 3e (1 + 2x) (x (1- e•- e2x)]'/• 
c2 = 1- e2 -- e2x l 2 (1- e2 - o2x) 

-1 2 (x (1 - e2 - e2x)]';, 
+ xtan e(1 + 2x) 

, 3e2 (1 + 2x) 2 tan-1 2 [x (1- e2 - e2x)]'/, } 
T 4 1- ez- ezx e (1 + 2x) · 

Let us denote by F 2 the amplitude of the 
process in tl1e two-meson approximation, which is 
determined in the c.m.s. from the relation du 
= I F 2 1 2do. The discontinuity in the amplitude t.F2 

near the point t = 4J.l2, arising when t traverses a 
discontinuity along the real axis from the point t 
= 4J.l2 to infinity, can, using Eq. (15), be written in 
the following form ( o is the isotopic index): 

- [w "( [k2x Xl + rokdxx k2] + k2ol' [X x kJ]] J 1} u1, (16) 

where 

J = --·-vx _j_xtan- 12 -yx _:__ •• tan- 1 zv x. 
1 2 ' e '4 e' 

J 3e v-+ t -12Vx I 3e2 t -12Vx 
2 =- 2 x x an - 8---, 4 an -.-. 

Expressing u1 and u2 through two-component 
spinors v1 and v2, we obtain 
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_ i o [k2 X k,] J 
(m + E,) (m + E2) 

+ J 1 [_ ibax + i m ~YE;- a ( wk2 - k20k1) + ( 1 + -m-+-:-w--;o;E,-

---'--~ I k.k, )k [k X l 
' m ' E. I (m + E,) (m + E.) 1 2 X 

. . k, [k.xxJ k ]} 
-~- l (m + £,) (m-+ Ez) a [k2 x ,] v1 , 

b = (wk2k1- k2oW2) / (m + £1) + (k2ok2k1- wk2) I (m + £ 2). 

(17) 

Let us write F 2 in the form F 2 = v~R2v 1 • The am
plitude corresponding to the state with angular 
momentum j and parity ( -1 )Z + 1 is given by the 
expression 

where the integration is carried out over the 
angles determining the direction k2• Assuming 
that l » 1 and n » 1 ( ~ = JJ./ w < 1)' we bring 
the integral over dK to the form 

1 00 

~ Pz (x) R2dx = rc~~: Qz (x2) ~ exp (- Ltx) t).R2dx. 
-1 0 

where K2 corresponds to the point t = 4JJ.2, and 

L 1 = (l + 1) F = 4~ (l + 1) [ 16 + 9~2 

+6~2/(1 +VI +~21s2)]-'l•. 

(18) 

(19) 

A small region of integration near the lower 
limit is important in Eq. (19). It is therefore nec
essary to !mow the amplitude in the vicinity of the 
point t = 4JJ.2• The size of the effective integration 
interval is K ~ 1/Lz or t-411 2 ~ 4JJ.2/LZ « 4JJ.2 . 

Let us substitute Eq. (19) into Eq. (18) and inte
grate over dcp using Eq. (17). In the expression 
thus obtained, there remain integrals of the type 

00 

~ exp (- Ltx) J;dx. 
0 

Substituting the explicit expression for J 1, J 2, we 
obtain 

00 

~ exp (- L 1x) J,dx = 

0 

00 

~ exp (- Ltx) J 2dx = 

0 

(20) 

The final result is expanded in terms of the 
parameter ?;z = E{l;i/2, which means that we con-
sider l « 4/ E2 ~ 180. <2> 

Thus, the final expression for ajz M is 

a}~•;,, 1, _,,, = -a}~'!.. 1 • • 1, = A~ (llv) <PI( 1 lv), 

a)::!.,1,, z. -'!. = al::!.,1,. 1, •1, =A~ (llv) 11> 2 (llv), 

a)~•;,. 1, _,1, =-a)~'!.. I.';,= A~ (llv) <D3 (llv), 

aj::!.,1,.:1• _,1, = aj::!_,1,. 1, ,1, =-A~ (llv) <D4 (llv). 

Where the following notation is used: 

A= p.'sg•Ah) (0,4p.2) (T(+) A(+)+ r<-) A(-)+ T(O) A(O)) 
4Y2"' 6 ~ 6 ' 

~ = (E14FW) [rrk (m + £ 1) (m + £ 2) 1 w]'f•, 

(21) 

<D, = V l (l + I) (l + 2) { ': 21 ~ 1 (S1_ 1- Sz+1) - (1 + h1) 

1 3W 1 
X 21 + 1 (Nz-1- Nz+1)- --;n h,h2 21 + 3 (Sz- Sz+2) 

- h2 (1 + h1) 21 ~ 3 (Nz- Nz+2l}, (22) 

<D2=V(l-l)l(l+l) {':' 21 ~ 1 (Sz-1-SZ+1)-(I+h1) 

X 21 ~ 1 (Nz-1- Nz+,)- 3~h• 21 ~ 1 (Sz-2- Sz) 

- h2 (I + h,) 21 ~ 1 (N1-2- N1)}, (23) 

V--{3W I I 
<D3 = l+l m2T+f(Sz-1-Sz+1)-(1-h1) 21 + 1 

X (Nz_1 - Nz+t) + 2 (h1 + m~\-;-) N1+1 

3W 1+2 
- -mh1h2 21 + 3 (5 1 - S 1+2) 

I H-2 2 k h } 1hz (I- h1) 21 -+ 3 (Nz- Nz+2)- T ( 20 1 + kh2) Nt , 

(24) 

V- { 3W I + 1 I + 1 
<D4 = z m 21 + 1 (Sz-1- s1+1l- (I- h1)2IT:L 

X (Nz_1 - N1+1) -2 ( h1 + m ~0E2 ) Nz-1 

3W 1-i - m h1h2 21 _ 1 (S1-2- St) 

+ h2 (1- h,) ; 1-=_\ (N1-2- Nz) + +(k2oh, + kh2) Nt}, 

Nz = 1!1 Ql(x2)( /rcLl -++3~~~)' 
h1 = w/(m + £ 1), h2 = k (m + £2). (25) 

(+) (-) (O) 
The values of T0 , T0 , and T0 are shown in 

Table III, which is taken from reference 5. The 
values of {3(1/v) <Pn(1/v) (n = 1, 2, 3, 4) are pre
sented in Table II. 

CONCLUSION 

A rough estimate of the two-meson amplitude 
can be made if we assume the cross section for 
the photoproduction of mesons on mesons to be 
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TABLE II. 

"'· Mev 1152.5 1178.7 1 244.5 I 
1/v I 2 I 1,5 I 1,2 I 

/o=3 
I 'I 
53., '"' 2850 .

1 

~ <l>l ·i0-6 {=4 3. 71 32. 9 525 
1·=5 0.289 4.08 109 
/o~3 -105 -533 -4470 I 

~ <1>2 .iQ-7 /o=4 1.42 18.8 362 
1=5 0.447 7.19 206, 

TABLE m. 

r<+) 1 1 0 0 
r<-) 0 0 vz -v2-
y(O) 1 -1 y2 vz 

~ e 2/ p,2• In that case, A {y) ( 0 .4p,2 ) "'47re/JJ 3, and the 
two-meson amplitude already makes a negligible 
contribution for l ;::, 3 as compared with the one
meson amplitude. 

Eq. (21) contains three constants A<+>, A<->, 
and A <o>. In fact, the photoproduction p-rocess is 
characterized by a single constant in each partic
ular case. For the photoproduction of 1r0 mesons 
on protons, yp- rr0p, this constant is A<+> + A <O>; 
for the yn- 1r0n process it is A<+> - A <0>; and for 
the processes yp- 1r+ n and yn _,. 1r- p the constant 
is ..f2 (A <O> + A<->) and ..f2 (A <O> --A<->) respec
tively. A<+>, A<->, and A<O> can be determined from 
the study of several different processes. 

In conclusion, the authors wish to thank I. Ya. 

w,Mev I 152.2 1 178.7 I 24Ui 

1/V I 2 I 1,5 I 1,2 

11=3 .45.5 1254 2380 
~ <1>3 ·10-• 1=4 3.31 29.3 463 

1=5 0.265 3.75 99.0 

1=3 46.2 I 267 2210 
~ <!>, .iQ-6 1=4 3.381 28.2 

I 
398 

1=5 0.258 3.45 81.8 

Pomeranchuk, I. M. Shmushkevich, and A. F. 
Grashin for helpful comments. 
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