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The current density j and the electric field intensity E in metals is investigated at frequen­
cies exceeding those for which cyclotron resonance was previously studied. 1 It is shown that, 
in the case of resonance, j and E on the central cross section of the Fermi surface (when 
the latter is not an ellipsoid) vary with the depth y in a very peculiar way. At not too great 
a depth (y « do/6 0, where d is the Larmor orbit diameter and 6 0 is the skin depth, d » o0 ) 

the field strength and the current have sharp maxima not only at the surface of the metal but 
also for y "" d, 2d, 3d, ... , (Fig. 2). For it d2/o 0, the current and the field oscillate at dis­
tances of the order of d with a damping depth of the order of do/o 0• In this connection, some 
new effects are predicted, such as discontinuities in the resonance impedance (with reso­
nance conditions maintained ) and discontinuous disappearance of resonance at the harmonics 
in plates of thickness D > d: 1) when the frequency of the field increases and 2) when a con­
stant magnetic field is rotated in the plane of the film. Other new effects are selective trans­
parency of films at resonance, and an electronic "echo" similar to the spin "echo." A study 
of the impedance of plates permits one to plot the Fermi surface directly. It is also shown 
that cyclotron resonance rather than diamagnetic resonance takes place in a number of semi­
conductors and poor metals. 

1. PHYSICAL REASON FOR SPIKES IN FIELD 
AND CURRENT 

IT is well known that a variable electromagnetic 
field in a metal is damped the more rapidly the 
higher the frequency of the field. However, we 
shall show that there exists a very important spe­
cial case in which, in a metal at a depth much 
greater (by two orders of magnitude ) than the 
usual skin depth, there exist sharp maxima of the 
value of the field. The field in these spikes is of 
the same order of magnitude as on the surface of 
the metal. 

Inasmuch as "spikes" of the field much deeper 
in the metal than the skin depth have not been en­
countered earlier, so far as we know, we shall 
first study the physical peculiarities of the given 
case. 

Let us first consider the motion of electrons in 
a metal along one of the orbits (orbit 1, Fig. 1) 
passing through the skin layer close to the surface 
of the metal, where the electric field is not small 
(the constant magnetic field H is perpendicular to 
the plane of the drawing). In a layer of the order 
of o, the electrons along a path of length ..fr6 re­
ceive a directed velocity and produce a current J 
and a current density j. 
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FIG. 1 

Downward motion along the orbit changes, in the 
first place, the electron velocity parallel to the 
plane of the metal (only then does current flow), 
causing current to change in proportion to cos cp; 
in the second place, the electrons will "disperse" 
throughout the depth, being contained (for cp 
w .../ ojr) not in a layer o but in a layer ..fr6 sin cp. 

Thus the current density brought about by elec­
trons of a given orbit is shown to be of the order 
J cot cp/ .f{;i, i.e., decreasing rapidly with depth; 
for cp ~ 1, it will be .../ r/ o less than in the layer o. 
A value of j of the same order as on the surface 
( j ~ J/o) is evidently achieved when cp ~ .../ o/r, 
i.e., at a distance of the order of o. At a depth 
y > r, the current density changes sign, remaining 
small in absolute value in comparison with J/o 
until the angle cp come close enough to <Po so that 
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I cp 0 - cp I ~ ../ D/r. At a depth d, the current den­
sity would differ in this case from the current den­
sity on the surface only in its sign. 

Such a current density would create an electric 
field which would cause directed motion (along the 
surface) of other electrons moving in the body of 
the metal, and the appearance of a spike of current 
and field at y = 2d, etc. As a result, it would be 
necessary to determine this self-consistent system 
of currents and fields. However, from earlier con­
siderations given above, it is clear that the graph 
plotted in Fig. 2 is completely natural. 

E,j 

FIG. 2 

So far we have discussed one of the orbits pen­
etrating through the skin layer, an orbit with a 
given radius r. It is clear that all orbits of a given 
radius penetrating the skin layer ( the scatter of 
the coordinates of their centers is obviously of the 
order D ) do not change the character of the pic­
ture just described. 

Another picture arises in the presence of orbits 
with different radii (for example, orbits 2 or 3 in 
Fig. 1), corresponding to different cross sections 
of the Fermi surface [we recall, for example, that 
for free electrons r = P1c/eH = chmE- p~JeH, 
0 ::::: pz::::: ../ 2mE, where p is the quasi-momentum 
and r changes from 0 to c../ 2m E/ eH ]. The scat­
ter in the radii evidently leads to the result that 
only a small part of the electrons ( of order D / r) 
is "collected" at an arbitrary depth in a layer of 
order D, and the field "pulled along" into the depth 
will naturally fall off extremely rapidly in subse­
quent "links" when y > d. 

In the case in which the cyclotron frequency Q 

of rotation around an orbit does not depend on the 
cross section (i.e., when the Fermi surface is an 
ellipsoid), this scatter in the radii cannot be elim­
inated. But if the cyclotron resonance depends on 
the cross section (i.e., on Pz• where z is the di­
rection of the constant magnetic field), then it is 
possible to make use of the cyclotron resonance to 
eliminate a significant amount of the scatter in the 
radii; in this resonance (see reference 1), only 
electrons close to the extremal cyclotron frequen­
cies, with scatter in Pz of the order of ~pz, take 

part: 

l)u- D(pz) ~ 1;-r, !':,.pz ~Po/ V un 

(Po is of the order of the limiting Fermi momen­
tum, T is the time of free flight of the electrons, 
and w is the frequency of the rf field); for the 
existence of resonance it is necessary in any case 
that WT » 1. 

The scatter in the radii possible for a given wr 
is quite different for the central cross section 
where, as is known from symmetry considerations, 
Q and d have extrema simultaneously, and for 
other cross sections, corresponding to an extre­
mum of n, where there is no reason to expect an 
extremum of d. 

In the first case, when d' ( 0) = 0, ~d 
= (%) d" ( 0) ( ~Pz )2 ~ d/ wr, for the existence of 
the structure of Fig. 2 it is necessary (and, as 
will be seen below, sufficient) that ~d ~ Do, i.e., 

(1.1) 

( v is the velocity of electron, c is the velocity of 
light, w0 is the plasma frequency, w0 ~ E0/li, Eo 
is the limiting Fermi energy). This is observed 
at frequencies much higher than those studied in 
reference 1. 

The condition (1.1) can be rewritten in the form 

H = m•cwje (l ~ v-r), (1. 2) 

which for 1 ~ 10-1 em, Do~ 10-5 em, v 
~ 108 em/sec corresponds to a wavelength of the 
order of 1 em and H ~ 104 oe, i.e., values feasible 
in experiments on cyclotron resonance. 

In the remaining cases (extremal Q correspond­
ing to non-central cross sections) we have ~d 
= d' ~Pz ~ d/ ../ wr, and the condition for the exist­
ence of the structure shown in Fig. 2 is 

w-r~(r foo)2. 

It is easy to prove that this conclusion is valid also 
for elliptical reference points (where v II H), in 
which the role of Pz is played by the angle cp, 
measured along the arc E = E0, vy = 0 (see refer­
ence 1). However, in this case the condition ~d 
~Do corresponds to the simultaneous disappear­
ance of the strong cyclotron resonance, since it 
calls for ~d »Do near the reference points. 

We note that the stronger inequality wr » ( r/D 0)2 

cannot be achieved in general. In fact, for cyclo­
tron resonance (when even a small deflection of 
the electron by collision with a phonon takes the 
electron out of the skin layer and out of the "reso­
nance" central cross section and is therefore very 
important), the number of electron -phonon colli-
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sions is 

k0 (1iw + kT)3 k8 (1iw \ 3 
Veff = 11-reff ~ T ~ ;;=:,li ke) 

( ® is the Debye temperature). Therefore, since 
T ~ T eff• we have 

2 (ke I v )2 (k8 c )2 w-r(oolr) G; T Wot; ~ ~ v ~ 1, 

because in practice E0v/c ~ k® for all metals. 
Thus, "spikes" of current and field are possible 

for central cross sections if 

w-r~(rlo0) 2 , nw;;=:,kT, l ~leff;;=:,(v1ilk8) (81T)3. 

For l ~ 10 -l em, this corresponds to T ~ 10° K, 
A. ~ 1 mm, H ~ 105 oe, which is (in the case of 
A. and H) at the limit of today's experimental cap­
abilities. 

If conditions (1.3) are fulfilled, an important ef­
fect is exerted on the resonance by the electric 
field perpendicular to the surface of the metal, and 
also by Fermi-liquid effects which, however, do 
not complicate the picture of Fig. 2. This is con­
nected with the circumstance that if condition (1.3) 
is satisfied the effective conductivity is 

aeff- a (6 ( r) V wt ~a 

(o/r takes into account the "ineffectiveness" of 
electrons outside the skin layer, and ../ WT is the 
number of rotations at resonance averaged over 
the "essential" orbits). 

A subsequent paper will be devoted to consider­
ation of the case in which the condition (1.3) is sat­
isfied, which makes it possible to obtain some in­
formation on the correlation function in a Fermi 
liquid, but which is much more complicated. In the 
present paper, for simplicity of presentation, only 
resonance of the central cross section is consid­
ered, with 

(r I 60 ) 2 ~ WT ;;=:, r I 60 • 

Naturally, the main interest attaches to the case 
in which the stronger inequality on the right also 
holds. 

We note in passing the following circumstance, 
which does not apply directly to the theme of this 
paper but which is worthy of mention. For a square 
law of dispersion, a sharp increase (by a factor of 
WT) in the conductivity at resonance can lead at 
sufficiently large WT to the result that the anomal­
ous skin effect will correspond to the conductivity 
uwT in a poor metal or even in an alloyed semi­
conductor, and the diamagnetic resonance will be 
replaced by cyclotron resonance. For this case it 
is necessary that 

that is, 

0~ <:.diu:· 
For bismuth, for example, at w ~ 1011 sec - 1 and 
l ~ 10-1 em, this inequality is very well satisfied. 

It is possible that the divergence of experimental 
results with ordinary theory is explained by pre­
cisely this circumstance (see, for example, the 
work of Lax2), inasmuch as one must treat the ex­
perimental data according to the theory of cyclo­
tron resonance (Lax also pointed out the fact that 
the data correspond to the theory of cyclotron res­
onance). 

2. DETERMINATION OF THE FIELD INTENSITY 
IN THE METAL 

It is well known that in the one-dimensional case 
the Maxwell equations (with the obvious neglect of 
the displacement current) reduce to the form 

jy = 0, (2.1) 

where the relation between j and E must be found 
from the kinetic equation for the electron distribu­
tion function in the metal. 

It can be shown (for example, in a fashion simi­
lar to what was done in reference 1) that when 
WT « (r/o 0 ) 2 the equations separate: the terms 
containing Ey, which does almost no work, are 
small in the expression for ja (and we can for­
mally set Ey = 0 in ja ), while jy = 0 is an equa­
tion that determines only Ey, which does not pre­
sent much interest to us. [In a paper devoted to 
the case wT ....., ( r/o 0 ) 2, a method will be given for 
separating the equations in the general case.] 

A general formula for ja will be found in ref­
erence 1; however, taking it into account that a re­
laxation time can be introduced for the anomalous 
skin effect, 1 ja can be determined much more sim­
ply (see the work of Chambers3). Evidently, 

• . t ·2e \ d d d 2e eH \' d d dt 
je'"'' = -p- j vn Px py Pz = 71" c) vn 2 Pz , (2.2) 

where n is the distribution function, t is the time 
for rotation of the electron about the orbit (which 

is determined by the equation dp/dt = p = ~v x H, c 
v = a E/8p ), and t1 is the "ordinary" time. The 
quantities E and pz determine the position of the 
orbit ( pz ) on the Fermi surface E ( p) = E. The 
quantity t can be interpreted in this sense, that it 
determines the location of the center of the orbit, 
in this case taking the integration over t from 0 
to T = 21r/il = 21rm*c/eH ( m* is the effective mass, 
n is the cyclotron frequency ) to mean integration 
over the centers of all orbits passing through the 
given point y. 
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In fact, let t be the time of transit of the elec­
tron from the top of the trajectory to the given 
point; then the statement that the electron has ar­
rived at the point after a time t means that the co­
ordinate of the center of the orbit is y - r ( t) 
(see Fig. 3; the determination of the center of the 
orbit is clear from the drawing), with 

t 
\ cpx (I) , 

r (f) = J Vydf c= ----eH-;- CODSt. 

I 
l!J 

FIG. 3 

Such an approach makes immediately obvious 
the consideration of the boundary condition in the 
region close to resonance ( I w - qQ I « w, q 
= 1, 2, ... ), where the only electrons of impor­
tance are those which do not collide with the sur­
face. It is clear that an electron does not collide 
with the surface if the top of the orbit lies inside 
the metal, i.e., if 

y-r(t)-r0 >0., r0 =d/2. 

Therefore, in order to take into account only elec­
trons that do not collide with the surface, it is nec­
essary to add the factors [y- r(t)- r 0] under 
the integral sign in (2.2), with s (w) = 1 for w > 0 
and s ( w) = 0 for w < 0. 

Now let us determine n. Inasmuch as the num­
ber of electrons remains unchanged, the distribu­
tion function changes only as the result of change 
in energy of the electrons, so that 

n (y, t1) =no (s- 1'1s) = n0 (s)- ~;so 1'1s (y, t1), (2.3) 

where ~E (y, tt) is the energy acquired by an elec­
tron incident at the point y at the time t 1 ( E: 
= ev. E). Determining ~E and substituting it in 
(2.3), and then substituting (2.3) in (2.2), we obtain 

ja. (y) eiwt, 

= ~2 e: eiwt, ~ Va. (t) e-iwt-t/T s (y - r (t)- ro) a::S" dedpz(it 

t 

X~ v(t')E(y-r(t) ':- r(t'))eiwt'-t-t'l<dt', (2.4) 
-co 

which gives the relation between j and E. 
Now, taking into account the periodicity of the 

velocities and r ( t ) in t with period T, we trans-

t t 
form J into J and keep only the principal term 

- 00 t-T 
in 1/wT « 1. Noting that 8n0 /8E ~- o ( E- E0 ), 

we obtain the following expression for j near res­
onance ( I w - qQ I « w ). 

ja. (y) = 2~:J- ~ r 1 - exp (- 2rri(•J; n - 2r: 1 D-r)r1 dpz 

T 

X ~ v a (T) e-' "'1 s (y - r ( t) - r 0) d t 
0 

T 

X~ V[3 (t') E 1s (y- r (t) + r (t')) eiwt' dt', 
0 

(2. 5) 

where [1- exp(- 27riw/Q- 27r/QT)]-1 evidently 
gives a large number of rotations for an orbit with 
a given Pz and E = E0: the error in an incomplete 
rotation is insignificant- it makes a non -resonant 
contribution to ja. 

Equations (2.1} and (2.5) can be continued as 
even functions in the region y < 0 if we set 
Ea( -y) = Ea(Y) and substitute s (y- r (t) - r 0 ) 

for s ( I y - r ( t) I - r 0 ), which is equal to it when 
y > 0; it is easy to see [if we take into account the 
central symmetry of the Fermi surface: E ( p) 
=E(-p)] that in this case ja(Y) = ja(-y). 

The basic mathematical difference from the cal­
culations of reference 1 is that in the latter case 
the minimum parameter is the "anomaly" para­
meter 60/r and in the taking of asymptotes one 
assumes WT « r/6 0; in the present case the min­
imum parameter is 1/wT, and WT» r/6 0• How­
ever, in exactly the same fashion as was done 
earlier, 1 it can be shown that account of the bound­
ary condition (which leads, as we have seen, to 
the substitution of unity for s [y - r (t) - r 0]) 

leads only to multiplication of the quantities of in­
terest to us by a constant of the order of unity. 

Physically this is quite clear: the important 
role, in any case, could be played even in the ab­
sence of a boundary only by trajectories on which 
the electron covers in a skin layer a path on the 
order of ...fro, i.e., close to the maximum possible 
value (trajectories 1, 2, and 3, but not 4, in Fig. 
4 ). Account of the boundary eliminates the tra­
jectories of type 1, 3, i.e., it merely decreases 
somewhat the effective conductivity. This decrease 
is the more insignificant in that the quantities of 
interest to us (for example, the impedance ) are 
determined by the cube root of the effective con­
ductivity. Therefore, for simplicity of presenta­
tion only, we shall disregard collisions of an elec­
tron with the surface, and investigate Eqs. (2.1) 
and (2.5) with unity in place of s [y- r(t)- r 0 ]. 
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FIG. 4 

Such a system of equations is quickly solved by 
the method of Fourier components, for which it 
suffices to multiply both sides of the equation by 
eiky and integrate over y from - oo to + oo. We 
have 

-k~?f .. ,(k) 2£~(CJ) = iKar.(k)t!;f3(k), 

Kac, (k) = 8 "~·~~;:! ~ [I - exp (- 2~iw I Q- 2rt I [h) ]-l dpz 

T T 

X\ exp {- iuJt -: ikr (I)} Va (I) dt ~ exp {iwt' 
() 0 

- ihr (t')} V,s (t') dt', 
(X) 

6a (h) = ~ e'"Y Ea (y) dy, 

co 
1 ,. 

Ea(y)~ --:;:~ifa.(h)coskydk, 

whence it is easy to find if a (k) and Ea (y ). 

(2.6) 

Although this solves the problem in principle, 
we carry out, for convenience of investigation of 
the function Ea ( y ), a further simplification of 
Eqs. (2.6). To determine the impedance and the 
"spikes" of current and field (the "what-not 
shelves" in Fig. 2 ), as is clear from Sec. 1, only 
electrons close to the "upper" and "lower" points 
of the central cross section are important, where 
Pz = 0, vy = 0, so that r ( t) has a minimum or a 
maximum. This statement (as well as many others 
which will be encountered later, statements made 
without proof) can be rigorously verified. 

At the points mentioned, 

(2. 7) 

and Ka{J [and with it Eq. (2.6)] is automatically 
diagonalized by the choice of the new orthogonal 

Naturally, the diagonalized equation 

- k2if!a -2£: (0) = iKrw.if!a (2.8) 

is not suitable for the determination of Ea between 
the spikes, where all points of the orbit are impor­
tant and not only its vertices. However, inasmuch 
as almost everywhere va,{J ~ v~,{J and the cross 
terms do not change the behavior of the functions, 
Eq. (2.8) is useful for a qualitative analysis of the 
behavior of Ea for all y, as can be established 
directly by simple (though cumbersome) calcula­
tions. 

From (2.8) and (2.6), by setting 

(2.9) 

and omitting the index a everywhere in what fol-
lows, we get 

(2.10) 

3. INVESTIGATION OF THE STRUCTURE OF THE 
FIELD IN A METAL 

For simplicity, let us consider the case of 
"exact" resonance: w == qn 0• It is easy to prove 
that for WT » r/o 0 one can set Pz == 0 in (2.6) in 
the inner integrals, so that we get from (2.10) 

00 

E (~) = _ ~r}_r,_ E' (O) J (C), J C ~ \" cos ~:.:..:xd:.:..:x_~~ 
" () .\x2 +iexp(-inoj4)M"A2 (x)' 

A (x) = A (- x) . 

= v, v~ I 12rrdo I~ v(t)exp [- iwt + ixr(t, 0) I do] dt\. 
0 (3.1) 

Here, 

r=r(t,pz), 

a= sign (Do I D")o· (3.2) 

axes a and {J, where a is the direction of the Here the dot indicates the derivative with respect 
velocity v at the point E = Eo, Pz = 0, Px = pJ?ax, to t and the prime the derivative with respect to 
so that v~ = v0• The fact that in this case Ka[J pz; the index 0 denotes the point E = E0, Pz = 0, 
= K{Ja = K{J{J == 0 apparently means only that K{J{J• KQj3, Px == pJ?ax. (The fact that A ( -x) ==A (x) can be 
K{Ja do not have a resonant character. Therefore, established by making use of the substitution t 
only Ea has "spikes" while EfJ has none. - To/2 + t == rr/w + t.] 

We note that we disregard cross terms in the Taking it into account that 
determination of both Ea and E/3. [In the deter- oo oo 

mination of E{J one must write down the non-res- J = ~ ... cos Cxdx = ~ ... exp (iCx) dx, 
onant KfJfJ correctly according to the formula 0 -oo 

(3.3) 

(2.6).] This is connected with the fact that, as can 
be proved by direct calculation, 

Kaa -(w-r)-'1', K[3[3-Ka[3-K{la-1, 

E~- (w1:)-'1•, £ 0 - I. 

where A 2 ( x) is an analytic function, and applying 
the theorem of residues, we obtain for !; not too 
close to an integer ( !; == a + !;'; a is an integer, 
!;' » M-1 ), 
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J ~ 2 M-'1. -irt (2-a)/8 ~ cos <;xn exp (- ~~n) (3.4) 
~ lt e L.J xn I A' (xn) I 

n=l 

~n = M-'!.e-i"(2-a)/SI Xn I A' (Xn) I; A (xn) = 0, Xn > 0. 
(3.4a) 

We note that for x » 1 

A (x) ~ JI2/X cos (xI 2- ~tl4), Xn ~ (2n + 112) ~t, 

~n ~ M-'!.n'1•. (3. 5a) 

If t' ~ 1, the series (3.4) converges rapidly: 
only n ~ 1 are important. The function J ( t ) os­
ciliates at distances of the order of unity ( y ~ r) 
and falls off extremely slowly at distances of the 
order of M3/ 2 [y ~ r 2 (wT) 114jo0; for w~ 1011 sec-1, 

1 ~ 10-1 em, n ~ 1022 em - 3, this corresponds to a 
depth of the order of 1 mm ]; for t » M3/ 2 it is 
enough to keep only the first term in the series 
(3.4). 

For t' « 1, the terms n » 1 become important 
in the series (3.4), which makes it possible to make 
direct use of the asymptotic expression (3. 5a) for 
A ( x) in the integral J ( t ). In this case, J ( t) is 
conveniently calculated in the following fashion, 
with accuracy to M -3• Transforming J ( t): 

co 00 2rt (n+ 1) 

J (C)_\ X COS (a+ C') X dx _ 'V \ d 
- j x3 + iM 3 exp (- irto 1 4) (1 +sin x) - L..J ) x. · · 

o n=O 2..:n 

:Xl 27t 
~ I 2rtn cos (ax+ 2rtnl;') dx 
~ 2J ) (2rtn)3 + i exp (- irto I 4) M3 (1 +sin x) 

n=O o 

and replacing the sum by an integration, we obtain 
co 27t 

J (~) = _1_ \ d I cos (ax+ ~,My) dx 
2rtM j Y Y ) y3 + i exp (- irta I 4) (1 +sin x) 

0 0 

00 
_ (-1)a\ ycos(C'My+rta/2)dy 
- M j y'g2 _ 1 (g + V g'l- 1 )a ' 

0 

g = I + y3 exp [- i~t (2- cr) I 4], 

(3. 5) 

Equations (3.5) are also suitable for the calcu­
lation of the derivatives of J (k) ( t) which are used 
below in Sec. 6 [in the series for derivatives, ob­
viously, n » 1 are important for any t. but sub­
stitution of summation for integration, i.e., keeping 
only the zero term in the Poisson formula which 
can be readily justified for t' « 1 and k :::: 0, and 
the transition to a formula analogous to (3.5), are 
no longer valid when t' ~ 1.] 

4. CONCLUSIONS FROM ANALYSIS OF THE 
BEHAVIOR OF THE FIELD 

Let us formulate without proof the results of 
the investigation of Eqs. (2.10), (3.4), (3.5). These 

results substantiate the conclusions of Sec. 1 (see 
Fig. 2). 

1. Near y ~ d0, 2d0, ••• , the absolute value 
of the field has a sharp maximum and is {M. times 
greater than the average field between the maxima. 

2. The distance from a maximum at which a 
value of the order of the maximum M-1 is achieved 
corresponds to a distance y from o0 (r/6 0 ) 1/ 6 to 
o0• This is easily understood if we note that for 
t'M » 1 we obtain J (t') ~ I t'M 1-1/ 2• 

3. With increase in the number of the maximum, 
its height falls off (for a » 1 ) as a - 113, and the 
"width" grows. The sharp maxima gradually dis­
appear; at large distances the field oscillates over 
distances y ~ r and slowly decays at a depth 
rM 312 ~ (ro/o 0 ) (wT) 114• 

4. For Yb = 2bd0 ( b = 0, 1, 2, ... ) there are 
separate extrema of the value of the field, the 
signs of which alternate as ( -1 )b. 

5. For y ~ Yb = ( 2b + 1) d0 ( b = 0, 1, 2, ... ) 
there are two extrema which differ only in sign; 
the field close to these points is antisymmetric; 
E (Yb + y') = - E (Yb - y' ). The signs of the first 
of the two neighboring extrema alternate as 
( -1 )b+i; the first extremum at y ~ d 0 has the 
sign opposite the sign of the field for y = + 0. The 
current density changes in a fashion similar to the 
field intensity, with 

j(~') ~[I~' M[ + I r'\ 
6. For n 0 T « r/o 0, the relative growth in the 

field close toy= d0 is of the order (n 0 T) 112; the 
a-th spike is of order 

E (0) a-'h (ilo I rt/3 (Qo-r)5aM. 

Thus, the condition n0 T:::: r/o 0 is extremely im­
portant, for unless it is fulfilled the spikes decay 
rapidly. These conclusions can be obtained from 
(2.6) where naturally it is not possible to set pz 
= 0 in the inner integrals, and the term periodic 
for kr » WT has the order --/ WT/kr.] Here, inas­
much as the effective T depends strongly on the 
degree of parallelism of the magnetic field to the 
surface of the metal, strict parallelism is essen­
tial if spikes are to be observed. 

5. MATHEMATICAL REASON FOR THE PRES­
ENCE OF SPIKES OF THE FIELD. CHARAC­
TERISTIC FREQUENCIES OF PLASMA OSCIL­
LATIONS 

At first glance, the fact that the field rapidly 
decays in the interior appears to be an obvious 
consequence of Eq. (2.1). Actually, inasmuch as 

ia. (y) ~ (creff / r) ~ Ka.B (y, y') EB (y') dy' 
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( aeff is the effective conductivity) and Za.o. = (- 4rriw 1 c2) (Ea. (0)1 E: (0)) = z. 

; E: ~ :. ~ + Ko.fl (y, y') E,s (y')dy', N '?>I, (5.1) Making use of (3.1), and carrying out transfor-

while K ~ 1 and falls off at distances of the order 
r, then 

and E must fall off at distances of the order of 
r/YN « r. 

However, this conclusion ,is valid only when for 
the given Ka{3 (y, y') the integral 

~ Ko.!l(y, y') Ep, (y') dy' 

is of the order of E, i.e., if (5.1) does not have a 
zero eigenvalue. 

In the considered case, for an equation corre­
sponding to (2.8), we have 

For w = qn 0, where q is an integer, T = oo is an 
infinitely multiply degenerate eigenvalue with 
eigenfunctions An cos (xny/d0 ), where Xn is a 
root of (3.4a). We are extremely close to this 
eigenvalue and it is not difficult to see that (3. 4) 
is a superposition of eigenfunctions, and that E ( t ), 
averaged over the interval M-1 « t:l{; « 1, is close 
to the eigenfunction. The "spikes" in this case 
are the natural singularities of the solution of the 
equation close to its eigenvalue. 

It is interesting that as T- oo the natural fre­
quencies wq of the plasma oscillations in a strong 
magnetic field ( n 0 T » 1) are shown in this fashion 
to be discrete multiples Of Q o: Wq = qQ 0 (this 
means several orders of magnitude less than the 
usual natural frequencies w0 ~ c/6 0 ) and the cor­
responding discrete values of the wave vector 

6. DETERMINATION OF THE SURFACE 
IMPEDANCE 

We shall investigate how the phenomenon of 
"spikes" affects the surface impedance. We im­
mediately note that, inasmuch as the impedance 
has a minimum at cyclotron resonance, a signifi­
cant resonance will be observed, as noted earlier, 1 

only for a definite polarization of the electromag­
netic wave, when E is directed along v0• There­
fore, as has been shown, 4 it is more convenient to 
measure the derivative of the impedance with re­
spect to the magnetic field, which is determined 
essentially by Zaa. where 

mations similar to those applied in Sec. 3, we find 
00 

Z 4iwd0 v- 'I (" = nc•M (q x) '.)zdz 
0 

X r[z3 I ~ r {1 +sin (x + SzN,zw2 )) dw ,J-ldx· 
~ 1 n .) w2+so exp (-is tan 'I x, I 1 ' 

(6.1) 
0 -oo 

where 

s =sign (w- qD0 ), s2 =sign r~, 

N 1 =I r:m~l r0m~" I Mx'l• (w~0r1 ~ (r 1 o0 )'1•x'f, (w-c0)-'l •. (6.2) 

The integration in (6.1) is easily carried out; the 
equations obtained which are too complicated to write 
down, make it possible to plot the entire resonance 
curve. Thus, for sa = 1, N1 « 1, we have 

co 

XNI/Ioei~\ r!:!f.[l- 1 ]} 
1 .\y' V1+y•' 

0 

1t (1 ° t -1, ,-1) tp = 60 - " + -;- an xl , 

and comparing Z ( 0) with Z ( oo ), we find that the 
appearance of "spikes" of the field increases the 
impedance (that is, it acts "against" the reso­
nance ) by a factor of r ( Y6 ) (J../2 ..f1f r ( % ) J -1 

~ 1.84, compared with the "ordinary" case ex­
amined in reference 1, without changing all the de­
pendences. This corresponds to a decrease of 
Z ( oo) with changing wr0 to approximately 1/40. 

We shall make clear how the presence of 
"spikes" in the case of films of thickness a= D/d0 
» 1 affects the impedance and its derivatives. Ac­
cording to the definition of impedance in (3.1), 

D 

Z = E (0) I~ j (y) dy =Zoo {I + J' (a) I J' (0)}, 
0 

J'(O) = -1 (6.3) 

where Z00 is the impedance of the half-space and 
the integral J (a) is given by Eq. (3.1). Thus for 
the determination of Z (k) (a) it is sufficient to 
know J ( k+ 1 ) (a ) . ( Strictly speaking, one should 
also take into account the presence of the surface 
y = D, writing down the boundary condition corre­
sponding to it, extending E and its equation in 
even fashion in the region 0 > y > - D and beyond 
periodically through all space with period 2D, and 
solving the equation by expansion in a Fourier 
series. However, for a » 1, in the zeroth approx-
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imation, use can be made of the solution for E ( t; ) 
in the case of a half-space.) 

Without carrying out the detailed derivations 
here, we only note that the jump in J ( k+ 1 ) is of 
the order Mka -(2k+ 3)/3, where even a - k gives a 
single jump, and odd a - k gives two jumps very 
close together, equal in magnitude and opposite in 
sign. Physically, this is evident from ( 6. 3) and 
Fig. 2: if a is varied, the current has alternately 
a single jump and two jumps, and these compensate 
for each other. 

7. NEW RESONANCE EFFECTS 

The basic predictable effect is the gradually 
damped and broadened "spikes" of field and cur­
rent density in the metal at a depth that is a mul­
tiple of the orbit corresponding to the central 
cross section of the Fermi surface, in a direction 
normal to the surface of the metal, and the slow 
damping of the field in the body of the metal [ at 
distances of the order r 2(wT) 114fo 0 ]. The pecu­
liarities of the structure of the field were analyzed 
in Sec. 4; they are shown in Fig. 2. 

Such a structure of the field leads to a number 
of new resonance effects. 

1. It is simplest to observe experimentally the 
change in the magnetic field of the derivatives of 
the impedance Z = R + iX (dR/dH, dX/dH, 
d lnX/dH ), since the impedance itself has, as has 
been pointed out, a resonant character only for a 
definite polarization of the electromagnetic field. 
However, one could observe with certainty only a 
non-monotonic change of the impedance with the 
appearance of "spikes" (which is connected with 
the fact that the approach of the magnetic field to 
resonance leads to resonance reduction of the im­
pedance and then to increase of it as a result of 
the appearance of "spikes") which does notal­
ways take place. It is more convenient to measure 
the quantity 

b. = (H- Htes) din XldH 

( Hres is the resonance value of H). Away from 
resonance it is constant without "spikes"; the 
presence of spikes leads to an additional "bump" 
since for N1 » 1 and for N1 « 1 (see Sec. 6) we 
will have t::. , - %. Naturally such a criterion for 
the appearance of "spikes" is not conclusive. 

2. It appears to us that the effects on layers of 
thickness D ~ 10-3 - 10-1 em are the simplest of 
all observed and also clearly account for the 
"what-not shelves" in the field structure (Fig. 2). 

Upon increase in the frequency w, one ought to 
observe jumps of the resonance values of the im-

pedance and its derivatives (the latter, as was 
pointed out above, are much more convenient) , 
which correspond to the fundamental ( w = ~ 0 ) 

when D = ad0 = a2cp~ax/eH (a is an integer), 
and also an abrupt increase in the number of ob­
served harmonics by one (from a to a+ 1 ), so 
that the number of observed harmonics also makes 
it possible to determine a and d0 = D/a. The rea­
son for this is clear from Fig. 5 (we recall that 
the change in the number of "spikes" of the field 
in the depth of the metal changes the impedance). 

O>Jri~ 

FIG. 5 

A similar effect should also take place for 
fixed w (which greatly simplifies the experiment) 
upon rotation of a constant magnetic field in the 
plane of the plate. 

For angles cp at which the impedance changes 
abruptly and the last harmonic disappears, one can 
also determine the diameter of the Fermi surface 
2p~ax = eHd0/c in the corresponding directions. 
Naturally, in order to construct the Fermi surface 
directly, experiments are necessary on layers of 
different thickness and with different orientations 
of the surface relative to the crystallographic axes. 

It is easy to estimate the magnitude and width 
in cp of the jumps in impedance and its derivatives 
due to rotation of the magnetic field. Since the 
jump corresponds to a change of ad0 by a magni­
tude of the order of a 213o0, then 

b.rp ~ a'I•!Jo I ad~ ( q:>) ~ llo I a'l•do, 

that is, of the order of ten of seconds. 
It is evidently most convenient to measure 

dZ/ dH as a function of the angle of rotation cp and 
to study the variation of the tangent to the curve 

f (m) = H d (l I leo- 1) 
T dH 

Inasmuch as 

=a 
d (l I leo -1) 

da 

dt at at da da 
7cP = acp + aa dip' dcp ~a, 

it is easy, knowing J"' (see Sec. 6), to verify that 
the jumps of df/dcp are of the order M2a -1/3. 

Moreover, inasmuch as M2 ;::. (r/o 0 ) 5/ 3 ~ 103, one 
can hope to observe jumps in plates of thickness 
up to M312d0 ~ 100d0, that is, with D ~ 1 mm (be­
cause of the extremely slow damping of the 
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"spikes," the thickness D is limited only by the 
inequality D < M312 d0 ). 

3. The third effect in which the "spikes" enter 
is the selective transmission of films at resonance, 
when the thickness of the film is D == ad0 ~ H (to 
observe this effect, it is obviously necessary to 
change the frequency w and the magnetic field 
simultaneously or to rotate the magnetic field in 
the plane of the film), and to observe the field, 
which "penetrates" to a depth r 2( WT )ifo/o 0• How­
ever, observation of these effects is very difficult 
because of the almost ideal reflectivity of the 
metal: reflection from only the two surfaces of 
the film leads to a reduction in the intensity of the 
transmitted wave by a factor""' ( 10o0 /A) 2, where 
A. is the wavelength of the incident wave. For a 
"penetrating" field which is not connected with the 
"spikes," the additional attenuation is of the order 
of r/6 0 ~ v0 A.(27rco 0 )-1• 

4. The next effect is a "spatial" electron 
"echo," similar in a certain sense to the well­
known spin "echo." If a pulse of duration ~t 
« 27r/rlo is incident on a metal placed in a constant 
magnetic field H such that n0 To» 1, then within 
the time 27r/rl 0, 47r/rl 0, ••• (Q 0 is the frequency 

corresponding to the central cross section), when 
the largest number of accelerating electrons 
reaches the surface of the metal, "echoes" will be 
observed -these are spikes of the field. ( For a 
square dispersion law all of the accelerated elec­
trons come together and the "echo" will be maxi­
mum.) 

5. For n0 T » 1, the fluctuations in the metal 
will have an unusual character. This problem will 
be considered in a separate paper. 

I thank I. M. Lifshitz for valuable discussions. 
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