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The change of the adiabatic invariant is found for a particle moving in an axially symmetrical 
inhomogeneous magnetic field. The problem is solved for the usual model Hamiltonian (1). 

THE problem of the conservation of adiabatic in­
variants, and in particular of the magnetic moment 
of a charged particle in a magnetic field, has re­
cently been dealt with in a number of papers;1•2 

these papers have shown that the change of the 
adiabatic invariant is less than any power of the 
adiabatic parameter. In reference 3 the change 
of the adiabatic invariant was calculated for an os­
cillator whose frequency depends on the time. It 
is obvious that the change of the adiabatic invari­
ant must be the same for a particle in a time­
varying uniform magnetic field, under the condi­
tion H - const as t - ±co. A more complicated 
problem is to calculate the change of the adiabatic 
invariant in a magnetic field that varies in space. 
The solution of this problem is the purpose of the 
present paper. 

1. STATEMENT OF THE PROBLEM AND 
METHOD OF SOLUTION 

Suppose the magnetic field varies slowly with 
position (the change in a distance equal to the 
Larmor radius being small). For x- ±co we 
have H- H±. The particle coming in from -co 
has the magnetic moment L . As x - + co, the 
magnetic moment of the particle will approach 
some other value I. . We shall calculate the change 
I. - L. The result can be obtained qualitatively by 
the following simple method. 

As is we 11 known ( cf. e. g., reference 4 ) , if the 
curvature of the lines of force is neglected the 
problem reduces to the study of the model Hamil­
tonian 

H = (p; + P! + m2w2 (x) y2) j 2m, (1) 

where w ( x) is the Larmor frequency. The small 
parameter of the problem is the quantity a 
= rLw'/w, where rL is the Larmor radius. Sup­
pose the solution x = x ( t) is known for the coor­
dinate x. Substituting this function into the equa-

tion of motion for y, we arrive at the problem of 
the change of the adiabatic invariant of an oscillator 
with frequency depending on the time, which was 
solved in reference 3. The result was found to be 

~I= 2R.e {- iexp 2i [~ w (t)dt + cp_ j}, (2) 

where t 0 is a zero of the function w ( t) in the 
complex plane of t, and cp_ is the phase of the os­
cillator at t- -co.* Since the adiabatic invariant 
changes only slightly during the motion, we shall 
treat it as a constant in obtaining the time depen­
dence x ( t). Setting I = const in the Hamiltonian 
(1) we get 

dt = mdx !V2m (E- I w (x)). (3) 

Finally, substituting Eq. (3) in Eq. (2), we get 

M { . . [r' m w dx ]} T = 2R.e - t exp 2t ~ Y2m (E-Iw) + cp_ . (4) 

Here x 0 is the zero of the function w ( x). 
Actually during the motion the adiabatic invar­

iant is defined to within an amount a, and the 
formula (4) is true only apart from a factor of the 
order of unity multiplying the exponential function. 
To calculate this factor one would have to develop 
a perturbation theory. In view of the fact that the 
classical perturbation theory is extremely compli­
cated, it is convenient to solve the quantum­
mechanical problem first and then go over to the 
classical limit. 

The Schrodinger equation for the Hamiltonian 
(1) is 

1 
2m (Ll~- m2w2 (x) y2~) = - Ecj;. (5) 

Here we have set 11 = 1. To solve the problem, 
following reference 5, we introduce an orthogonal 
coordinate system in which the variables in Eq. (5) 

*Everywhere in the text expressions of the type (f(u)du 

are to be understood as meaning ([f(u)-f(-oo)]du + xf(-oo). 
-<Xl 
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"almost separate" 

'= x- y 2w'j4w, 1J = J/ mw y. (6) 

In these coordinates Eq. (5) takes the following 
form: 

where 

L1 =1J2 {U')2+ j-rt} Lo + ~ [(f') 2- {- f"f] ~ ( 1J2 ~) 

- ~: ~ [t (<{') 2-} f"f) ~] + o (oc4), f = (mw)-'1,, 

2. THE ZEROTH APPROXIMATION 

The zeroth-approximation is 

(8) 

(9) 

[ ( a2 2) -a·1a) J mw o't)• -1j +V w a~ ( y;;; a~ +2mE q; =0, (10) 

Separating the variables in this equation, we get 
the set of solutions: 

In, E) = Y n (1j) ZnE (~), 

where Yn ( TJ) are the normalized eigenfunctions 
of an oscillator with frequency 1. It must be noted 
that there are three different cases, in which dif­
ferent expressions hold for the function ZnE ( ~ ) : 

1) The motion of the particle is infinite in both 
directions. In this case ZnE ( ~ ) has the form 

ZnE(~) = (2rc;nE f'(mw)'/•{exp (i~knEd~) 

+ RnE exp (- i ~ k nEd~)}, (11) 

2) There is one point on the real axis where 
knE = 0. This case corresponds to reflection from 
a "magnetic plug." 

3) There are two real roots of the equation knE 
= 0. This corresponds to a particle that is in a 
"magnetic trap." 

Only the first two cases are considered in the 
present paper. In the second case the function 
ZnE ( ~ ) has different forms on different sides of 
the turning point, and near the turning point it is 
a solution of the Airy equation. In this case, how­
ever, as Landau and Lifshitz have shown ( cf. ref­
erence 6), one can use contour integration to cal­
culate the matrix elements, and this leads to the 
same results as in the first case, which we shall 
treat here. The coefficient knE ( ~ ) is of order of 

magnitude a on the interval where the important 
variation of w occurs, and becomes exponentially 
small for x- + oo. The transverse quantum num­
ber n plays the role of the adiabatic invariant in 
the classical limit. In zeroth approximation there 
is no change of n. 

3. THE SCATTERING MATRIX 

Let us find the transition amplitude by perturba­
tion theory 

As is shown in reference 7, in calculating the 
matrix element <n' E' I L1 I nE > we can keep only 
the first term in the expression for ZnE. In the 
calculation of the matrix element one encounters 
integrals of the following type: 

(12) 

i; 

p+icr = ~ (knE- kn'E') d~. (13) 

The path of integration can be shifted into the half­
plane in which a-> 0. In doing so one must carry 
the path around the singularities of the integrand. 
Then the branching associated with the vanishing 
of the quantity knE does not contribute to the re­
quired matrix element. In fact, near this point 
Eq. (12) loses its meaning; it must be replaced by 
·a solution of Airy's equation which has no singu­
larity at the point in question. The singularities 
of the integrand are the zeroes and poles of the 
function w. The main contribution to the integral 
(12) will come either from the saddle point or else 
from the zero or pole ~ 0 of the function w ( ~ ) 
that corresponds to the smallest value of a- ( ~ 0). 

For definiteness let us examine the case in which 
the contribution is either from the saddle point or 
from a simple zero. 

At the saddle point ~ 1 we have w ( ~ 1 ) 

= (E- E' )/(n- n' ). The points ~ 0 and ~ 1 lie on 
the curve L [ Imw ( ~ ) = 0 ], which intersects the 
real axis at some point ~,. If the quantity 
( E - E' )/( n - n') is positive, then ~ 1 lies on 
the curve L between the points ~, and ~ 0• If, on 
the other hand, ( E - E' )/( n - n') < 0, then ~ 1 

lies on the curve L beyond ~ 0 • Let wm be the 
maximum value of w a) on the segment (g'~o) 
of the curve L. It is obvious that the condition for 
the existence of a saddle point is ( E - E' )/ (n - n') 
::s wm. Thus in the case 0 < (E - E' )/(n- n') 
:s wm the calculation of the integral (12) can be 
carried out by the ordinary method of steepest 
descents, which gives 
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n'E' [ 10i ]'/, (w')'/, · • 1 

QnE = ( ') 2 k - 3 exp {tp (<;I) -I a (~I) 1}. n-n mnE w 
(14) 

The expression (14) cannot be applied in the 
cases E = E' and n = n'. Indeed, in these cases 
the main contribution to the integral (12) comes 
from the residue at the zero ~ 0 of the function 
w ( ~ ), which is a third-order pole of the integrand. 
In the case E = E' the pole coincides with the 
saddle point. In the case n = n' the pole does not 
coincide with the saddle point, but gives a larger 
contribution to the expression (12). Calculating 
the residue at ~ 0 , we get 

n'E n-n' 
QnE =7t4Eexp{ip(~o)-fa(~)f}, (15) 

. (2 )'/, 
Q~f = - T ~ (V£- V£') 2 exp {ip (i;o) -I a (i;o) f}, 

. (EE') • (16) 

A= w' (1;0). 

We recall that p ( ~ 0 ) and (]" ( ~ 0 ) are taken from 
the definition (13) with the suitable values of nE, 
n'E'. 

For 

(£-£')IE~ A'1' (m£3)-'1•- ya: 
the expression (14) goes over into the form (15). 
In the case ( E - E' )/ ( n - n' ) < 0 the integral 
(12) is given by the residue at the point ~ 0, which 
gives a result that coincides with Eq. (16). Using 
Eqs. (14), (15), (16) and the well known expressions 
for the matrix elements of an oscillator, we get 

< n + 2. E I L1 f n, £) 

= ;~ ·vcn +I) (n--;- 2) exp {ip(i;o) -I cr(i;0) f}, 

< n- 2. E I L1 1 n, E ) 

=;~ Y(n-l)nexp{-ip(i;~)-fa(i;0)f}. (17) 

For transitions with changes of n by more than 2 

the results are exponentially small in comparison 
with those just stated. 

For ( E - E' )/ (n - n') » c}/2 the matrix ele­
ment has the structure (14) with a somewhat dif­
ferent coefficient of the exponential function, which 
coefficient, however, is less than or of the order of 
unity everywhere in the domain of applicability. 

It is shown in the Appendix that the subsequent 
approximations make contributions to the scatter­
ing matrix that are small in a. Thus the non­
diagonal transition matrix elements reduce to the 
expressions (17). In virtue of the unitarity relation 
the diagonal element of the scattering matrix is of 
the form ann = eicp [ 1 + 0 ( exp{ - 2 I (]" ( ~ 0 ) I } ], 
where cp is a small quantity, cp ~ a . 

Knowing the scattering matrix, one can easily 
calculate the change of the adiabatic invariant of 
the particle. For this it is necessary to construct 
a wave packet describing the classical particle on 
its trajectory. Carrying out calculations analogous 
to those done in reference 3, we get 

!::.II =(3
8"')2Re [-iexp 2i{~' mwd~ + cp_11,]. (18) 

.) f2m(E-Iw) 

We note that the coefficient of the exponential 
function does not depend on I and E. Within the 
framework of our method it is not hard to take into 
account the curvature of the lines of force. This 
problem, however, needs further investigation. 

APPENDIX 

Let us estimate the contribution to elements of 
the scattering matrix made by the second approxi­
mation. Having in mind the application to the clas­
sical case, we confine ourselves to just the calcu­
lation of the matrix element an, n + 2 ( cf. reference 
6). The second approximation of perturbation the­
ory is given by the formula 

\ (n, E I Ltl n +2, E'> <n +2, E'l Ltl n +2, E>-+- <n, E I Ltl n, E'> <E', n I Ltl n +2, E> dE' 
j E'-E-io ' (A. 1.) 

Let us consider for definiteness the first term. We 
divide the integration over E' into three intervals: 
( 0, E), ( E, E + 2wm) and ( E + 2wm, oo). In the 
interval ( 0, E) the integrand is of the form [ cf. 
Eq. (16)] 

(0F. r£')4
) exp {i ~· (knE + kn+2. E- 2kn+2, £') ds }· 

A2 E'-E .) (A. 2) 

The integrand has a triple zero at the point E' 
= E, and therefore the problem of passage around 

a singularity does not arise in the integration. At 
this same point the exponent has a maximum value 
which is equal to the exponent obtained in the first 
approximation. Therefore the main contribution 
comes from a region of the order a near E' = E. 
Integration over this region gives a coefficient for 
the exponential of the order a. Actually the ex­
pression (A. 2) ceases to be valid in a neighbor­
hood of E' = E of the order a 112• For the estimate 
in this region we replace the matrix element 
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<n., E I L1 1 n + 2, E > by the quantity (17). In this 
region the matrix element <n + 2, E' I L1 1 n + 2, 
E > is at least of the order a. It is not hard to 
see that in this case the integration in Eq. (A. 1) 
gives for the exponential function a coefficient of 
the order of or smaller than a112• 

In this same way it can be shown that the inte­
gration over the interval ( E, + co) leads to this 
same estimate. 

It is not hard to carry out analogous arguments 
for the subsequent approximations of perturbation 
theory. 
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