
SOVIET PHYSICS JETP VOLUME 12, NUMBER 2 FEBRUARY, 1961 

THE SCATTERING OF SPIN WAVES AND PHONONS BY IMPURITIES IN FERROMAGNETIC 

DIELECTRICS 

V. G. BAR'YAKHTAR and G. I. URUSHADZE 

Physico-Technical Institute, Academy of Sciences, UkrainianS. S. R. 

Submitted to JETP editor February 20. 1960 

J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 355-361 (August, 1960) 

The effect o£ impurities on the heat conductivity of a ferromagnetic dielectric at low temper
atures is examined. The conductivity of a ferromagnetic dielectric containing impurities is 
calculated. 

THERMAL energy can be carried in ferromagnetic 
dielectrics by spin waves and by phonons. Akhlezer 
and Shishkin1 have calculated the thermal conduc
tivity determined by the interaction of spin waves 
and phonons with one another, and also by the 
interaction of spin waves with phonons. According 
to these authors, the conductivity varies exponent
ially with temperature at low temperatures. This 
relation is connected with the fact that it is only 
possible to obtain a finite value for the conductivity 
of a crystal if umklapp processes are considered, 
as was shown by Peierls. 2 In these, the quasi-
momentum and consequently also the energy of at 
least one of the interacting particles must be suf
ficiently great. 

If a crystal contains impurities, the scattering 
of long-wave spin waves and phonons by the im
purities must be taken into account in calculating 
the thermal conductivity. Since there are consid
erably more long-wave phonons and spin waves 
than short-wave ones at low temperatures, the 
low-temperature conductivity will be determined 
by scattering of spin waves and phonons by im
purities, and not by umklapp processes, the 
probability of which falls off exponentially. We 
shall not consider the excitation of optical-mode 
phonons, since their contribution to the thermal 
conductivity at sufficiently low temperatures is 
also exponentially small. 

The aim of the present work is to study the in
fluence of impurities on the thermal conductivity 
of ferromagnetic dielectrics. We can write the 
Hamiltonian for a ferromagnetic dielectric in the 
form 

where the first term is the exchange energy and 
the second is the energy of elastic lattice 
vibrations. 

(1) 

The exchange energy of a ferromagnetic dielec
tric containing impurities is 

H(s) = -- -~ ~ J1 (Rtn) SzSn 
l,n (2) 

- ~ J 12 (Rin) Sz~n --·-· ~- ~ J2 (Rtn) Cizel,, 
t,n - l,n 

where sz is the spin of an atom of the basic 
{ferromagnetic) substance, uz is the spin of a 
paramagnetic impurity atom, J ( Rzn) are the ex
change integrals and Rzn = I Rz- Rn I is the dis
tance between the l-th and n-th lattice sites. The 
first term in the Hamiltonian H(S) is the exchange 
energy between atoms of the basic material, and 
the summation is taken over those lattice sites 
which are occupied by atoms of the basic sub
stance. The second term is the exchange energy 
between basic atoms and paramagnetic impurity 
atoms, with the summation over l taken, in this 
case, over those lattice sites occupied by basic 
atoms, and over n taken over those sites occupied 
by impurity atoms. The third term is the energy 
of the exchange interaction between paramagnetic 
impurity atoms, with the sum taken over sites oc
cupied by these impurity atoms. 

The exohange energy H(s) is not changed for
mally if there are diamagnetic impurities. We 
should bear in mind that the summation in (2) is 
already not taken over all lattice sites. 

The energy of elastic vibrations of the lattice 
can be expressed, as far as terms quadratic in the 
atomic displacements, Un, from the equilibrium 
position, in the form 

I ~ • 2 1 ""' 4(1) !R ) i k HU> = c,- LJ mnUn -+ -;;-LJ' ik \ In UtUn 
:.... n ,_. /,n 

" (12> i k 1 ~~ A(2)(R ) 1 k + ~ Aik (Rzn) UnUi + 7 LJ ik In UzUn, 
t.n l.n 

(3) 

where mn is the mass of the atom at the n-th site 
and Aik are quantities characterizing the elastic 
interaction between atoms. The first term in the 
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Hamiltonian (3) represents the kinetic energy of 
the atoms, the second the elastic energy of atoms 
of the basic material, the third the elastic energy 
related to the interaction of the basic and impurity 
atoms and, finally, the fourth term represents the 
elastic energy of the impurity atoms. The summa
tion in the first term of the Hamiltonian H(l) is 
taken over all lattice sites, in the second it is 
taken over those sites where there are atoms of 
the basic material, in the third term the summa
tion over l is taken over those sites where there 
are atoms of the basic material, while over n it 
is taken over sites occupied by paramagnetic or 
diamagnetic impurities and in the fourth term the 
summation is taken over those sites where there 
are impurity atoms. 

It is convenient to express the Hamiltonian H 
as the sum of a Hamiltonian Ho describing free 
spin waves, phonons and the exchange energy of 
paramagnetic impurities and a Hamiltonian Hint 
characterizing the scattering of spin waves and 
phonons by impurities: 

H = H0 +Hint, 
1~ 1 ~· 

H 0 = -2.6 JI(Rzn)Szsn+2mLJUf 
l, n ln 

+ f ~ Al1> (Rzn) u}u~-~J12 (Rzn) syan, (4) 
l.n n,l 

l n I n 

l n n 

Here m is the mass of a basic atom and ~mn 
= m - mn. In expression (5) for Hint. the summa
tion over n is taken over the impurity sites. Be
sides impurities, we must also consider the exist
ence of a rarer isotope of the basic substance. 
Corresponding to this we must also take the sum
mation in the last term of the Hamiltonian Hint 
over sites occupied by atoms of the rarer isotope. 
We should point out that in writing the Hamiltonian 
Hint we have omitted terms proportional to the 
square of the impurity concentration. 

Transforming from the operators sz and uz to 
creation operators ait and annihilation operators 
ak of the spin waves3 and creation operators bkj 
and annihilation operators bkj of the phonons4, we 
obtain 

(6) 

+ 'EXk.;,k,j,b~,;, bk,;, + compl. conj . (7) 

Ek = 2J 1s (ak)2 is the energy of a spin wave with 
wave vector k, a is the lattice constant, tiWkj 
= ticjk is the energy of a phonon with wave vector 
k and polarization j and the summation is taken 
over all the vectors k and polarization j. 

The quantities <I>, '11 and x are determined 
from the equations 

<Dk,k,= fJ12afdk1, k2) +J1sa2(k1, k2)[f1(k1, k2) + f2(k1, k2)], 
(8) 

(9) 

+)..z (n1, n2)l f2 (k1, k2) + m-1;j_m3f3 (k1, k2)}, (10) 

where J 1 and J 12 are the exchange integrals for 
neighboring atoms; ekj is the unit polarization 
vector; A. 1 (n1, n2 ) and A.2 (n1, n2 ) are dimension
less quantities of the order of unity, dependent on 
the directions of the wave vectors and polarizations 
of the phonons scattered by the impurities; ~m1 , 

~m2 and .D.m3 are respectively the differences be
tween the masses of an atom of the basic material 
and of a paramagnetic impurity atom, a diamag
netic impurity atom and an atom of a rarer isotope. 
Finally, the function f ( k1, k2 ) describes the phase 
difference produced in the scattering of spin waves 
and phonons by impurities, and f 1, f2 and f3 refer, 
respectively, to scattering by paramagnetic and 
diamagnetic impurities and by atoms of a rarer 
isotope. The function f ( k1, k2 ) is determined by 
the formula 

f (kJ ,k2) = ~ ~ exp {- i (k1- k2, Rn)}, 
n 

where the summation over n is taken over those 
lattice sites occupied by the corresponding 
impurity. 

If we know the interaction Hamiltonian (6) we 
can calculate the thermal conductivity of a ferro
magnetic dielectric determined by scattering of 
spin waves and phonons by impurities. For this 
purpose we write the kinetic equations, giving the 
change in the number of spin waves Ilk and of 
phonons Nkj in the presence of a small tempera
ture gradient: 

nkT = L~s {n} + Lr {n, N} = n~ (n~ + I) T-2skvk VT, (11) 

Nkf = L~j{N} + a'i {n, N} = N~j{N~j + I) r-2 1iwkjCkjVT, 

where Vk =ti- 1£le:k/Clk is the velocity of a spin 
wave; Ckj the velocity of a phonon of polarization 
j and wave vector k; n~ and N~j are the equili
brium Bose functions. The collision operator L 
is equal to: 
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a~ {n} = ~"' ~I CDk,k, [2 [(nk, + I) nk, 
k, 

- nk, (nk, + I) (Nk,i + I)] o (sk,- Ek, -nwk,i) 

+ / 'Fk,k,k,; j 2 [(nk, +I) (Nk,d- I) nk, 

-nk,Nk,i (nk, +I)] o (sk, + nwk,f -sk,)}, 

a1j{N} = 2; ~ I zk,j,k,j,: 2 [(Nk,;, +I) Nk,j, 
k2i2 

- N k.i, (N k,i, + I )l o (nwk.i,- hwk,,,), 

Lk'; {N, n} ~= 2; ~ I'F k,k,k.i 12 [(N k.i,--;- I )(nk, + I) nk, 
k2k3 

- N k.i, nk, (nk, + I )l o (n (•Jk,j, + sk,- sk,). 

(12) 

(13) 

(14) 

(15) 

We shall look for solutions of (11) of the form 
nk = n~ -:- n~ (n~ + I) T-2skg (c:k) (kvT), (16) 

Substituting (16) for the distribution functions of 
spin waves and phonons in the kinetic equations (11), 
and linearizing the collision operator for a small 
temperature gradient, we can obtain the following 
equations for the distribution functions g and f if 
we assume that Ek and wk depend only on the 
magnitude of the wave vector k: 

g (sk) raa'1onk --i- Da1/onk] ~~ 1, 

f;(n(•Jk;) [oLk1J!oNk1 -r- oL~jJoNkil = 1, (17) 

where c5Lk/ onk and c5Lkj / c5 Nkj are the variational 
derivatives of the collision operators with respect 
to the dbstribution functions, taken at nk = n~ and 
Nkj = Nkj· 

From (17) we obtain 

_,;~-1 (sk) = -- 2" ''I CDk k.1 2 o (sk,- ck,) 
0 1 n..LJ. ~~~ 

k, 

- 2; L; C '¥ k,k,k,f 12 (nk, + N k, + I) o (sk,- sk, --n(llk,;) 
k,k,j 

-[ 'Fk,k,k,; ~ 2 (nk,- Nk,;) o (sk, + n(J)k,f- sk,)}, (18) 

-1 2rr '-' I X 12 • (" " ) fj 1 ((•)ktiJ = - T L.J i ktit• kzi2 ° nWkdt- nCJ)k 2 j 2 

k:.dz 

--i- 'l.i/: ~ I 'F k,k,k,; :2 (nk,- nk,) o (nwk.i, + sk,- sk,)· (19) 
k2k3 

We shall now determine the heat currents Ss 
and Sz, carried by spin waves and phonons 

s1 = ~n(J)k;ck;Nk;· 
ki 

Using the distribution functions (16) and neglecting 
the dependence of the velocity of sound Ckj on the 
direction of the wave vector k, we obtain6 

From this the thermal conductivity 

where Ks and KZ are the thermal conductivities of 
spin waves and phonons: 

. 2 T \' ( sk \ s o ( o -'. 1) r (~ ) dk 
"' = - 3 (:~rol" 7! .l Tj nk n" r g ck ' 

(20) 

1 T 1 { <;> (1i00 ki) 3 o o xt=- 3 (2n)"h~ ~ T Nk;(Nkt+I)f1(nwk;)dk 
I TfT<S; 

r;s1t 

+ ~ f1(T) (n;ir N~I(N~;+ l)dk}· 
() 

(21) 

The functions g ( Ek) and fj (tiWkj) which ap
pear in (20) and (21) depend, in general, on the 
actual location of the impurity in the solid. If the 
impurity concentration is small enough so that 
dk » 1 (d is the mean distance between the im
purities and k is the mean value of the wave vector 
of a spin wave and phonon at a given temperature) 
we can neglect interference in the scattering of 
spin waves and phonons by separate impurities. 
This means that we can replace the term 

I f (kit k2) 12 = ~2 ~ ~ exp {i (k1- kz, Rn)} [2 

n 

by gjN, where g are the mean concentrations of 
the respective impurities. In this limiting case 
expressions (20) and (21) for Ks and Kl take the 
form 

2 00 

"t = 2; ~{n~j. ~f1 (y) N~(N~ + l)dy 
i 1 

+f;(l)~y2N~(N~+ l)dy}, (23) 

where 11 is the Bohr magneton, M0 = 11/a3 is the 
magnetic moment per unit volume and 

f"jl (Y) = [ ( ~,:1) 2 
( e 1e 2f + ~] ;P + [ ( ~:.•) 2 

( e1e2)2 + ~] ;d 

t. (~ms)2 (--)··2 -1- t 2J12a (~)3 2l.za (eY -1) + '"' m ele2 <;p 2 2/rs T ys mci 

xf ex"VX(x+Y) dx. 
~ (ex- 1) (c+Y- 1) 
0 

gp, ~d and ~ i are the concentrations of paramag-
netic and diamagnetic impurities and of atoms of a 
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rarer isotope; the bar over the functions A.i, A.~, 
and (e 1e2 )2 indicates integration over the angles, 
and ®j = ticj ;a. 

' In certain limiting cases, Eqs. (22) and (23) 
simplify considerably. We derive first expressions 
for the phonon conductivity. 

If eu « J 1, 

x1 ~ 8};jlia~T, 

;= [(l1ml/m)2 (e1e2)2 + ~) ~P + [(l1m2/m)2 (e1e2)2 + ~] ~d 
(24) 

If 0D»Jt 

z; .~ H};;iia~T, 

xz ~ (J11'J1z) 2 JI;Iia~P• 

The expression for the conductivity given by equa
tion (24) and by the first formula of (25) agrees 
with the phonon conductivity found earlier by 
Pomeranchuk5 and by Klemens 6 from a considera
tion of the thermal conductivity of dielectrics. 

The conductivity of the spin waves, Ks is given 
by: 

Xs ~ (J rfali~p) (T jJ 1)2 , ep ~?3> (T jJ I)2 ~d. 

Xs ~ (JI/ali~d) ln (T /tJ-M0 ), ~P "'~ (T/JI)2 ~d· 
(26) 

By using (24)- (26) it is easy to obtain expres
sions for the thermal conductivity of ferromag
netic dielectrics in various limiting cases. 

We confine ourselves to the case when the im
purity is either paramagnetic or diamagnetic. If 
the impurity is paramagnetic, then 

x~8};jlia~pT, 8D~~J1; 

x~(JifJI2)2Jrfah~p. 8D~"'Jl. 

If the impurity is diamagnetic, then 

(27) 

x = (J1jan~d) In (T itJ-M0 ), BD ~> T ~ B'b!J1; (28) 

x = Bbjali~dT, T "'(~ 8};/Jl· 

For paramagnetic impurities, therefore, the con
ductivity is determined by the scattering of 
phonons by impurities. For diamagnetic imp uri
ties, if ®u » T » E>t/J1 the conductivity of a 
ferromagnetic dielectric is determined by scat
tering of spin waves by impurities, and for 
T « ®b/ J 1 by scattering of phonons by impurities. 

According to the work of Akhiezer and one of 
the present authors, 7 the conductivity determined 
by umklapp processes is 
x~(mc2;9n)(C1 +2C.)2a&exp(rr8D/T), 8D~J1 ; (29) 

x ~ (T jan) exp (rr2J 1/T), 8D ~ J 1 . 

Here Cs ~ a- 3 (T/Jt)312 and C1 ~ a- 3 (T/®u)3 

are the heat capacities of the spin waves and 

phonons respectively. By comparing expressions 
(27), (28), and (29) it can be seen that collisions of 
spin waves and phonons with impurities are the 
dominant factors determining the conductivity if 
the impurity concentration is great enough to 
satisfy the inequality 

98}; ' n8D) 
~P>mcza•(Cz+2C.)2 exp (-r rrpll EID~J~; 

(30) 

~P ~ (!2_)2 !.I_ exp (- n•J1) rrp11 8 D ~ J 1 
~ J12, T \ 2T 

for the case of paramagnetic impurities, and the 
inequality 

J ( 8 )" T ( n8 D 82 ~d > ____!,- _E. ln- exp - -T ) rrp11 HD ~ T ~ ____!!__; mc2 T p.Mo J1 

t ( 8 D)2 ( n2J1 ) c;d> T exp -Z'T , 

eb (J1 )s (-neD) e'£, -- - exp -- rrpll T~JI, -J 
mc2T T T 1 

for diamagnetic impurities. 

(31) 

We have not considered the scattering of spin 
waves and phonons on the boundaries of the speci
men in calculating the conductivity. This is per
missible if the mean free paths, lz and ls, of the 
phonons and spin waves are considerably smaller 
than the specimen dimensions L. The mean free 
paths can be derived from the conductivities Ks 

and K[ by using the relation which is well known 
in the kinetic theory of gases 

x~vlr:, (32) 

where C is the heat capacity, v the average 
velocity, and l the mean free path. 

The mean velocity of spin waves is vs (T/Jt) 112 
x J 1a/n, and the mean phonon velocity is the veloc
ity of sound, c. Using expressions (24)- (26) for 
Kl and Ks, it is easy to see that the inequalities 
ls « L and lz « L hold if 

~P + (TjJ1)2 ~d ~ajL, (33) 
(JI2/8D) 2 (T ;J1 )3~p + (T /HD)4 (~p + ~d + U ~ a;L. 

If the inequalities (33) are not satisfied the con
ductivity can be derived from the equation 

(34) 
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