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Possible mechanisms of autophase selection of excited oscillators in a radiation field leading 
to instability of the system with respect to electromagnetic disturbances are considered. It 
is shown that from the quantum point of view the instability of such systems may be due to un­
equal spacing in the (anharmonic) oscillator spectrum or to recoil during the emission of a 
photon. 

l. It is known that a multi -velocity current of 
charged particles, moving in a straight line at a 
uniform velocity v greater than the velocity of 
light cn in the surrounding medium is unstable un­
der electromagnetic perturbations (see, for exam­
ple, references 1- 4). From the classical point of 
view this instability can be attributed to the bunch­
ing ( autophase selection) of the particles in the 
field of the electromagnetic wave that is propagated 
at an angle equal to the Cerenkov angle with re­
spect to the direction of motion of the unperturbed 
current, and to the coherent Cerenkov radiation of 
the bunches formed. An analogous instability takes 
place also in a current of excited electric oscilla­
tors, with the one difference, that in this case, the 
autophase selection, which leads to the appearance 
of coherent radiation, turns out to be possible also 
for currents slower than light, v < cn (in particu­
lar, for v= 0).* 

We consider here possible mechanisms of auto­
phase selection of excited oscillators and offer an 
explanation of the instability of such a family of 
systems, both from the classical and from the 
quantum points of view. 

2. We consider a current of excited oscillators, 
each of which comprises a charg:ed particle, exe­
cuting free oscillations of frequency w0 in the frame 
moving with the oscillators. We assume that ini-

*In a current of electric oscillators (even unexcited), 
moving faster than light, there is a possibility of instability, 
which is related to the anomalous Doppler effect. 4 '5 An ex­
ample of such a system is an electron current moving in a 
straight line in a uniform magnetic field. • It is interesting to 
note that the possibility of generation and amplification of 
high-frequency oscillations in an electron beam system fo­
cused by a longitudinal magnetic field was indicated earlier 
by Pierce,' who, however, did not indicate the relation of this 
phenomenon to the anomalous Doppler effect. 

tially the amplitudes of the oscillations of all the 
oscillators are identical, that the phases <Pk are 
distributed so that the alternating component of 
the average (macroscopic) current is everywhere 
zero, and that there is no electromagnetic radia­
tion. Under the action of a randomly generated 
electromagnetic perturbation e = e ( r) eiwt, h 
= h ( r) eiwt, the motion of the oscillators is 
changed and an alternating polarized current ap­
pears, the radiation of which is superimposed on 
the initial perturbation. 

Let us assume first that the oscillators are har­
monic and that only a homogeneous (quasi-station­
ary) alternating electromagnetic field can exist in 
the system. It is not difficult to demonstrate that 
such a system will be stable. This is because the 
alternating component of the polarization current, 
by virtue of the linearity of the laws of motion of 
the oscillators, will be the same as in the system 
of unperturbed oscillators, which is stable when 
v < cn. From this it follows that the phase sorting; 
(bunching) of the excited oscillator under the ac­
tion of the electromagnetic field, which is neces­
sary for the instability, is possible only in those 
cases when the motion of the oscillators is non­
linear. By considering the equation of motion of 
an anharmonic oscillator in a sufficiently weak ex­
ternal field of frequency w close to the frequency 
of free oscillation w0 (or close to one of its har­
monics pw0, p = 1, 2, 3, ... ), we can distinguish 
two different mechanisms of phase sorting. 

Phase bunching of anharmonic oscillators. A 
phase shift in the oscillations of an anharmonic os­
cillator may be caused by "phase instability" of 
the orbitally-stable motion of such an oscillator, 
which is a nonlinear conservative system. 8 The 
frequency of an anharmonic oscillator depends, 
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generally speaking, on its energy E. Let, for ex­
ample, dw0 /dE < 0. Then, those oscillators which, 
on average over a period, give up energy to the 
electromagnetic field (which is varying with a fre­
quency w ~:::: pw0 ) will oscillate more rapidly 
(d<Pk/dt > 0 ), than those which absorb energy 
(d<Pk/dt < 0 ); for dw 0 /dE > 0 the sign of d<Pkldt 
is reversed. In either case, phase bunching of the 
excited oscillators occurs.* 

We can explain the mechanism of phase sorting 
described above with an example of oscillators 
with one degree of freedom x (t ), in an alternating 
field Fx = Fa ( x, x) eiwt of amplitude Fa. The 
general integral of unperturbed motion (for F x 
= 0 ) of such an oscillator is the periodic function 

x0 (t) =X {w0 (E0) t + cp0 , E0}. 

Perturbation of the constants of integration, E 
= E0 + D.E and <P = <Po + D-<f1, leads to the appear­
ance of an additional term x~1) ( t) which equals, 
in the linear approximation ( I x~ l) I < I x0 I) 

(1) • ' • Xo = X0 (t) llcpjw 0 + {U (t) -,-- Mx0 (t) t} llE, (1) 
M = d In w0 (E) j dE, 

where u ( t) is a periodic function of t. Equation 
(1) describes the "phase instability" of the or­
bitally-stable motion of an anharmonic oscillator: 
small perturbations of the energy (amplitude) 
lead to a phase shift that increases with time 

llcpeff = llcp + Mw0tllE. 

Using (1) it is easy to find the perturbation x<1) 
= x - xo ( I x<1) I « I x0 I ) caused by the action of the 
high frequency field. In particular, for frequencies 
that coincide exactly, w = pw0, we obtain 

x<l) = 1/ 2 MG_pe-iP"'xo (t) t2 : 'I"1 (t) t + 'Y2 (t), (2) 

Where -.J!1 and -.J!2 are periodic functions of t, 
and Gk are the Fourier coefficients of the function 

x0 (w0t + cp, Eo) F x (xo, x0 , t)jll'(t) 

= .lJ G k exp {i (w + kw0) t + ikcp}. 
k 

Here D. ( t) is the Jacobian of the functions 
x0 ( t ) and u ( t ) + M:X0 ( t ) t and is periodic in t. 
According to (2), the result of the prolonged action 
of a sufficiently weak field [when all the terms-in 
(2) other than the first, may be ignored] is the ap­
pearance of a phase shift that increases with time 

llcpefl;::::; 1/2 MG_pffioe-iw;t2, 

the sign of which depends on the initial phase of 
the oscillator <P· 

*Such a phase sorting mechanism was considered by Agdur• 
for a quasi-stationary strophotron. A more general treatment is 
given in the work of Garduk. 10 

Spatial bunching of oscillators moving in a non­
uniform field. If the force acting on the oscillator 
depends on the coordinates and on the velocity, 
then, for w = pw0, its mean value (over the period 
27r/ w ) will, generally speaking, not vanish and its 
sign will depend on the phase of the oscillator <P· 
As a result of the action of the generalized forces 
corresponding to the "external" degrees of free­
dom of the oscillators, a spatial regrouping of the 
oscillators occurs (displacement of centers of 
gravity or rotation of the direction of oscillation) 
in accordance with their phases. 

For example, for a harmonic oscillator 
undergoing oscillations along the x axis [ x0 

= Xa cos ( w0t + <P) ] and capable of displacement 
along the z axis under the action of the force fz 
= Fa ( x, x, z, z) eiwt of frequency w = pw0 is given 
approximately by 

(3) 

where Fk are the Fourier coefficients of the force 

Fa{X0(t), x0 (t), z0 , O}ei"'1 = ~Fkexp{i(w+kro0)t+ik:;-}-
k 

The magnitude and sign of the displacement z(1) 
depend, according to (3), on the phase of the oscil­
lator <P; it is this fact that ensures the spatial 
bunching of the oscillators according to their phase. 

Both phase and spatial bunching of excited os­
cillators (in the general case they can exist simul­
taneously) lead to the appearance of a non-zero 
addition to the polarization current and consequently 
to additional coherent radiation (induced emission). 
For a rigorous investigation of the stability of a 
system of oscillators and a calculation of the in­
crement that characterizes the rate of growth of 
the electromagnetic perturbation, it is clearly nec­
essary to find the self-consistent electromagnetic 
field; the determination of this self-consistent solu­
tion requires specification of both the nature of the 
oscillators and the properties of the system that 
guides the radiation. The solution of some specific 
problems of such a type can be found in references 
9 - 16. Here we limit ourselves to a simple energy 
calculation, which shows that an increasing elec­
tromagnetic field can occur in the system. 

We consider, for example, a system of immobile 
anharmonic oscillators in a high-frequency field 
e ( r) eiwt, h ( r) eiwt and calculate the work A, 
performed by the field on the oscillator. Using the 
perturbation method as before, and putting w » I w 
- pwo I >" 0, we obtain 

x<n =- MG_P _exp {i (w- F_W_i)_ t.- ip<p)) Xo (t) 
("' --- pwo)-
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and find for the mean power P = -dA/dt CfJ = xFx CfJ, 

after averaging over the phases, 

(4) 

where F x is the x component of the Lorentz force 
acting on the oscillator, and a = - Im ( w - pw0 ), 

y = Re ( w - pw0 ). * 
For mobile oscillators in a non -uniform field 

we obtain an analogous expression which differs 
from (4) only in a factor independent of a and 
y. In this way, when M ~ 0 and y ~ 0 the oscilla­
tors give up energy to the growing (a > 0) oscilla­
tions. This indicates that such systems can be un,­
stable with respect to electromagnetic excitation 
(induced emission prevails over absorption). 

3. Although the instability of a system of ex­
cited oscillators is not related in essence to quan­
tum effects and can be fully explained from the 
classical point of view, nontheless a quantum in­
terpretation of the various mechanisms of insta­
bility may be useful. Moreover, a quantum "modeF~ 
turns out to be, in a sense, more simple and gra­
phic, if we are not concerned with a calculation of 
the increments that characterize the instability. t 
Bearing this in mind, we limit ourselves below to 
a qualitative consideration of simple idealized 
systems, neglecting questions concerning the cal­
culation of the distribution of the oscillators over 
the levels, the finite line width of the radiation, etc. 

(a) The instability of anharmonic-oscillator 
systems is related to the non-equidistant spacing 
in their energy spectra. Actually, let us assume 
that the oscillators, placed in an ideal resonator, 
are initially at identical levels ( N ~ 0) and inter­
act with one another only through the radiation 
field. Under these conditions a quantum emitted 
in the transition N-- N - 1 in a resonator tuned 
to a frequency w =(EN- EN-t}l'i-1, cannot be ab­
sorbed in the transition N -- N + 1. As a result, 
owing to the large population of the level N, the 
energy of the field within the resonator will be in-

*In a reference frame where all oscillators move along the 
z axis with identical velocities v, it is necessary to allow 
for the Doppler effect. In the nonrelativistic case, if the ques­
tion concerns interaction with a traveling wave ei(wt-kzz), 
it is necessary to put in ( 4) 

~The situation is analogous for the instability associated 
with the anomalous Doppler effect.>·• 

creased, i.e., the system is unstable.* We note 
that a molecular generator, which employs oscilla­
tors with two levels (essentially nonlinear), is in 
this sense a special (but in principle, quantum) 
example of the systems considered. 

(b) In the quantum approach, the recoil during 
the emission (or absorption) of a photon contri­
butes to the displacement of a mobile excited os­
cillator in a non -uniform electromagnetic field. 
The picture of the instability in this case is more 
complicated, as each oscillator must have at least 
two degrees of freedom- "external," correspond­
ing for example to translation along the z axis, 
and "internal" (vibration). We shall consider 
separately the interaction of such oscillators with 
traveling and with standing waves. 

In investigating the interaction with traveling 
waves (wave vector k, refractive index of the med­
ium n) it is natural to take as the initial state of 
the oscillators, which interact with each other only 
through the radiation field, a state with a definite 
z component of the total momentum p~o) = p< 0l z 0 

and a definite vibration energy EN. From the laws 
of conservation of energy and momentum it follows, 
as is well known, (see, for example, reference 4) 
that in such a system there are, corresponding to 
the emitted and absorbed quanta, different frequen­
cies, which are given by, for k II z 0, p~ = 0 and 
nw «EN 

1iwe = (1 -1irvn2 j2EN)(EN- EN-d, 

1iwa = (1 + nwn2j2EN) (EN+!- EN). (5) 

From (5) it is seen that even in the case of har­
monic oscillators with equally spaced quantum 
levels, emission by the transition N -- N - 1 can­
not be absorbed by the transition N -- N + 1.t This 
demonstrates the instability of the system with re­
spect to moving electromagnetic waves. 

*For a finite oscillator radiation line width, finite Q of 
the resonator, and a distribution of oscillators over the initial 
states which is not a o function, the absorption of the radiated 
quanta is, generally speaking, possible. Subsequent transitions 
of the oscillators to the levels N + 2, N + 3, etc., are also 
possible here. However, it is evident from qualitative consid­
erations that in any case, for not too large line widths of the 
oscillators and the resonator, radiation will prevail over ab­
sorption after some time, i.e., instability is maintained [we 
note that when EN+l -EN <EN- EN-1 the instability may 
be at a frequency 1iw SEN - EN-1. which agrees with the 
classical requirement that y < 0 for dw0/dE < 0, derived from 
(4) . Highly characteristic, from this point of view, is the ex­
ample considered below with relativistic electrons, where the 
non-equidistance of the energy levels is of the order 1iwH/mc2 , 

but instability is maintained as in the classical approximation. 
tsee the preceding footnote. 
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An interesting example of a system of mobile 
anharmonic oscillators is provided by relativistic 
electrons in a magnetic field H0 - a rarefied non­
equilibrium magnetoactive plasma with a o distri­
bution of parallel and transverse momenta Pz and 
p 1· It is easy to see that for such oscillators 

(EN- EN-d- (EN+I- EN) 

(6) 

where wH = eH0c/EN is the gyromagnetic fre­
quency and EN :::::< mc2. From (5) with (6) it follows 
that for n = 1 the Doppler effect, which determines 
the recoil when quanta are emitted in the z direc­
tion, compensates the unequal spacing of the levels 
of the relativistic electrons. In this case the emis­
sion and absorption occur exactly as in systems of 
immobile harmonic oscillators, and consequently 
the system (in the approximation considered) is 
stable with respect to waves, propagated along the 
magnetic field ( k II H0 ). When n ~ 1 or k ~ Ho 
there is no compensation and the system becomes 
unstable. Classical calculation confirms these con­
siderations.13• 14• 17 

We consider the interaction of mobile oscillators 
with standing waves in the simplest example, when 
the field in the system can be considered quasi­
stationary, E = - V' cp. The field of a two-dimen­
sional quadrupole cp = Aqxz, where q is the coor­
dinate of the field (charge on a capacitor),* is 
structurally the simplest nonuniform quasi-station­
ary field. The energy of interaction of such an os­
cillator (for example, an electron in a magnetic 
field Ho = H0z0 ) with such a field can be written in 
the form W :::::< ecp = eAqxz 

We assume that the oscillator is vibrating in the 
plane xy ( x oscillator) and for simplicity take the 
motion along the z axis also to be oscillatory ( z 
oscillator), but with a low frequency w1• As is 
seen from the expression for the interaction energy, 
transitions of the x oscillators with absorption and 
emission of quanta, but without change of the state 
of the z oscillators, are forbidden in such a sys­
tem. Therefore, if initially all the x oscillators 
are at the same level N ~ 0 but the z oscillators 
are at the lowest level, then emission and absorp­
tion proceeds at different frequencies. 

We= (EN- EN-l) Ti-1 - W1 , 

In this way, even in the case of (linear) oscil­
lators with an equidistant spectrum, excitation of 
the z oscillator (i.e., the displacement due to re­
coil during emission) makes the system unstable. 

*The dipole corresponds to a uniform field. 

4. The considerations cited above make it pos­
sible to explain, both from the quantum and from 
the classical points of view, the instability of a 
whole series of systems containing excited oscil­
lators. As already noted, the simplest example 
of an excited anharmonic oscillator is a charged 
particle moving with relativistic velocity along a 
helical trajectory in a uniform magnetic field H0, 

or along a trochoidal trajectory in crossed (Eo 
and H0 ) fields. Systems of such oscillators ( elec­
tron .currents in waveguides, unbounded inhomog­
eneous magnetoactive plasma) are analyzed in the 
classical approximation in references 11-14.* The 
analysis is analogous for other types of oscillators, 
for example electrons oscillating in an electro­
static potential well, rigid dipoles in a uniform 
field etc .15- 17 In all the particular cases, the solu­
tions obtained in the classical approximation by the 
self-consistent field method show that such non­
equilibrium systems are actually unstable with re­
spect to electromagnetic excitations. 

The author thanks V. L. Ginzburg and V. M. Fa!n 
for discussion of questions relating to the present 
work. 
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