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Stationary quasi-one-dimensional and one-dimensional flows are considered. It is shown that
shock wave formation is possible under certain conditions in the case of media with finite

conductivity.

STEADY one-dimensional and quasi-one-dimen-
sional flows (by the latter are meant flows with a
variable, smoothly changing cross section f(x)
filled by the given lines of flow) of an arbitrarily
conducting medium, assumed here to be an ideal
gas, are described for the case of a perpendicular
magnetic field [u L H, u(u, 0, 0), H(O, W, 0),
E (0, 0, eV7)] by a set of stationary equations of
magnetic gas dynamics, two of which have as first
integrals?

d(puf)/dx =0,  puf =M,
pudu/dx dp, |dx =0,
d (hu) ] dx = vud®h | dx?,

1
2)
3)
(4)

(u, p, p, H, E are the velocity, pressure, density,
magnetic and electric field, respectively; M and
B are constants; ppy, = p + h%/2; vy, is the “mag-
netic” viscosity, k is the ratio of specific heats,
and a = (kp/p)¥? is the speed of sound).

Let us consider the stationary quasi-one-
dimensional flows of media with vy, = 0. We
have from the system (1) — (4)

hu = vpudh/dx + MB,
udp — ua*dp = v, (k — 1) (dh)? /dx

dp/du = —(p/ua®) (u* — h*/p),
d(pu)/du =p[l —a™*(u-— h?/p)].

(5)
(6)

It is not difficult to prove that the current dens-
ity p u achieves its maximum value at the criti-
cal point for which u =ay,g = (a2 + hz/p)i/z. The
following relations can also be obtained from
Egs. (1)—(4):

(W —a2 ))du/u=a%df/f,
(u*—a2 ) dp/p=—(u*—h*/p)df /],

(7
(8)

whence it follows that for u < ap,g, if df = 0, then
du = 0; for u> ap, if df= 0, then dus 0. It
is interesting that the extremum of p takes place

for u®=h%/p, which is seen from (5) (h/Vp is
the velocity of propagation of Alfven waves). It
follows from (8) that for df < 0, if u?s h%/p,
then dp= 0; for df >0, if u®s h%/p, then

dp = 0, i.e., in a flow with converging flow lines
we have a maximum p for u?=h%/p, and with
diverging lines we have a minimum p.

We consider stationary one-dimensional flows
of media with vy # 0. If f = const, then it is
necessary to replace the input M and the constant
B in the set (1) — (4) by the current density m
= M/f and the constant b = Bf, which is expressed
in terms of the constant value of the electric field
e=¢e; b=—cey/m. Here Eq. (2) has the integral

mu+p, =1. (2a)

We further transform Eq. (4) by means of (1) and
(3) in such a fashion that the differential dppy, ap-
pears in place of dp. We obtain an equation simi-
lar to Eq. (4):

udp,, —uatdp =v_(k— 1)(dh/dx)2dx, (4a)

where

dh \': ) 1,
am = <a2—|—hd—P) = (a® -+ A; + Ay) 2

o ”
coincides with the expression for the propagation
velocity of low-intensity shock waves in an arbi-
trarily conducting medium in the presence of a
perpendicular magnetic field.! We can also verify
that ay, has the meaning of an effective sound
velocity by linearizing the nonstationary system
corresponding to Egs. (1) — (3), (4a) in the usual
way. When vy =0 we have h = const- p and

ay, = apy s for vy, = 0 the value of a, depends
essentially on the flow conditions. It is evident
that if A; is due to the magnetic field, then the
presence of A, can be explained by the finite
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conductivity; in this case it is natural to assume!

that

Amo == Am > Q. (10)

The “freezing-in” condition follows from (1)
and (3):

h/p=(vm/m)dh dx b, 11)

while the equation

(W—a)dp/p=v, (k—1)m™ (dh/dx)2dx = (k — 1)dQ,
(12)

can be obtained from (1), (2a) and (4a), where

dQ = (vm / m) (dh | dx)?dx = TdS (13)

is the Joule heat. If the components A; and A,,
which are obtained in terms of ay, from (9), are
transferred to the right-hand side in (12), then,
by taking (11) into account, we have

(u? —a®dp [p = (kvmm™'dh | dx - b) dh. (14)

With the help of the well-known thermodynamic re-
lations that hold for an ideal gas

dw=dQ -+ dp/p=kdQ + a*dp/p (15)

(w is the enthalpy), and making use of (13) and (1),
we reduce Eq. (14) to an integrable form

udu -+ dw - bdh = 0,

u?/2 4+ w4 bh =u*/2 + w, = A = const. (16)

It is easy to prove that wp, has the meaning of
effective enthalpy only when vy, = 0.

We can use the integral (16) in place of (4a);
thus, for example, we can obtain from (1), (2a),
(3), and (4a) a single equation for dh/dx, which
can be integrated numerically.!

We note that Eq. (12) recalls the well-known
equation of classical gas dynamics for the motion
of a viscous gas in a heat-insulated pipe of con-
stant cross section.? Since we shall not consider
the effect of thermal conduction, and since the
motions of media with finite conductivity are ac-
companied by dissipation and the production of
heat, such an analogy becomes obvious.

The right side in (12) can only be positive;
therefore,

dp <0, du>0 for u<am

do>0, du<0 for u>am. 17)

Continuous transition through the critical veloc-
ity u = amy is impossible (flow crisis). For u

= ap,, atthe point x =xp, we have
=0

dh/dx (18)

Ah

and, as follows from (9),
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am (xp) = a (xz) = u (xz). (19)
The values of u, p, p, h at the point xi are
completely determined from (1), (2a), (3), and (4a)
in terms of the constants m, b, ], and A (we
also have apy, = a at the point in the current
where dh/dx = —mb/vyy, and h =0). The rela-
tions (18) and (19) satisfy Eq. (14), which gives

in addition another possible value of dh/dx for
the flow velocity u =a(x = x*):

dh/dx |y = —mb/kvp. (20)

If we take into account the entropy S as a func-
tion of p, then it is seen from (12) that when u
= ayy this function has an extremum which can
only be a maximum, since there isno S=S(p)
that has a minimum when u = ay, and satisfies
simultaneously (17) and the condition dS > 0. In
this connection, we can conclude the following:
if at any point in the current x = x,, taken as the
initial point, we have u > ay, while S = Spax is
attained at a finite distance from x;, then the
formation of a shock wave is inevitable, behind
which u < ap; if S=S8y5x is attained at infinity
or is not attained at all, then u > a;, at any finite
distance from x,; if at the point x, we have
u > ay,, then the value u = apy, is a maximum
and is attained only at infinity. However, it is
necessary to recall that in media with high con-
ductance (small value of vy, ) there is a high
thermal conductivity, an account of which can lead
to qualitatively different results.

We now determine the possible values of
dh/dx in the current, at the initial point of which
u(xy) and h(x;) >0, while e =¢e;< 0. It is ob-
vious from (11) that dh/dx = —mb/vy,. It follows
from (14) that for u < a,

dh/dx >00r —mb/v, <dh/dx < —mb/kv,, du>0,
—mb [ kv, < dh/dx <0, du < 0;
(21a)
for u> a,

—mb [ kv, < dh/dx <0, du >0,
dh/dx >0 Or — mb /v, < dh/dx < —mb|kv,, du<O.
(21b)

Comparing (21), (17), (9), and (10) we get

for u<a, ajy (du>0, dp<0):

—mb /v < dh|dx < —mb|/kvn, d?h/dx?>0; (22a)

for a<u<ay (du>0, dp<0):
— mb [ kv < dhjdx < 0, d*h [dx > 0; (22b)

for u>a, a;m (du<0, dp>0).
dh/dx >0, d*h/dx*<O. (22c)

It is clear from (22) that the value of dh/dx
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= —mb/vy, (h=0) is impossible while, generally ! Baum, Kaplan, and Stanyukovich, Bsenesue B
speaking, a point x = x* can exist in a current KocMHuueckyio ra3oByio fuHaMuky ( Introduction to
with u < ap,. Cosmic Gas Dynamics), Fizmatgiz, 1958.

The values of dh/dx can be similarly estimated 21.. D. Landau and E. M. Lifshitz, Mexanuka
for other flow conditions. ciaounbix cpep (Mechanics of Continuous Media ),

Gostekhizdat, 1954.
In conclusion, the author expresses his gratitude
to Prof. K. P. Stanyukovich and G. S. Golitsyn for a Translated by R. T. Beyer

number of discussions. 62



