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We have developed a diagram technique to evaluate the single-electron density matrix. 
Quantum mechanics is used to obtain a transport equation which takes into account the in­
homogeneity of an external electrical field and the self-consistent electron field. 

IT is well known that the evaluation of transport 
quantities requires the summation of an infinite 
number of terms of a perturbation-theory series, 
however small the coupling constant. It must there­
fore always lead to the formulation and solution of 
some kind of integral equation. Boltzmann's clas­
sical transport equation is an example of such an 
equation. 

Many papers1- 5 have been devoted to the deriva­
tion of a transport equation. In some of them1 the 
problem is studied using classical mechanics. In 
the papers by Kohn and Luttinger3 and van Hove, 4 

which are based upon quantum theory, there is no 
diagram technique. The technique proposed by 
Montroll and Ward5 and by Prigogine and Ono6 

does not use the convenient second quantization 
formalism and is thus complicated (in reference 6 
three-dimensional diagrams are even used). Also, 
if there is no simple and convenient diagram tech­
nique, it is extremely difficult to apply it in those 
cases where the classical Boltzmann equation is 
inapplicable (for instance, the problem of plasma 
kinetics or the polaron). In a paper by Abrikosov, 
Gor'kov, and Dzyaloshinski17 a simple diagram 
technique was proposed which enabled one in prin­
ciple to evaluate transport coefficients directly. 
However, the straightforward evaluation of trans­
port coefficients, even in the case where the trans­
port equation is valid, is a difficult problem. Also, 
the authors of the cited paper did not derive a trans­
port equation, and its derivation by means of their 
technique is difficult. We must note that the idea 
of analytical continuation, proposed in reference 7 
and used with success by Larkin, 8 turns out to be 
extremely helpful for evaluating the internal block 
diagrams obtained in the present paper. We re­
strict ourselves here to a derivation of a general­
ized transport equation and we show that it turns 
into the usual transport equation when the latter is 
valid. In a subsequent paper we shall obtain a 

transport equation for a plasma on the basis of the 
technique developed here. 

1. THE SINGLE ELECTRON DENSITY MATRIX IN 
AN EXTERNAL ELECTROMAGNETIC FIELD 

We consider a system of electrons and some 
other particles interacting with them ( phonons or 
impurity centers). We assume that in the initial 
state, t - - oo, the system was in contact with a 
thermostat and could be described by a density 
matrix 

F 0 = z-1 exp (- ~H'), Z = Sp exp (- ~H'), 

~ = (kTt1, H' = H- p.N, 

where p. is the chemical potential and N the oper­
ator of the total number of electrons. At t - - oo 

an ·adiabatically increasing weak electromagnetic 
field is applied to the system and at the same time 
the contact with the thermostat is broken. The 
time variation of the density matrix F of the sys­
tem is determined by the equation 

iriaF/ot = [(H + Ht). F], 

H1 = ~ p (x) U (x, t) dx-~ ~ J~'- (x)A~'- (x,t) dx, 

where p (x) is the charge density operator, JJ.! (x) 
the current density operator of the system, and 
U ( x, t ) and Ap. ( x, t ) are respectively the scalar 
and vector potentials of the weak electromagnetic 
field. 

In the approximation which is linear in the field, 
the solution of the equation for the density matrix 
can be written in the form F = F0 + Fto where 

o B 
F1 = ~ d-r~dxE~'-(x, t+-r)~d).J~'-(x, T + ifi).) F0 

-00 0 

B 

+ ~ ~ dx A~'- (x, t) ~ dU~'- (x, i1iA) F0 • (1) 
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To derive this formula we used the relation 
div J ( x) = p ( x) and the identity9 

where 

B 

IF0 , Ll = in~ dAL (inA) F0 , 

0 

L (t) = exp (- H't!ili) L exp (H'tlili), 

L = (i1i)-l [L, H'J. 

The average value B of a quantity B can be 
evaluated using the formula 

B = Sp F0B0 + Sp FtB0 + SpF0Bt, B = B0 + Bt. 

where Bt is the correction to the operator B, 
necessitated by the perturbing vector potential in 
the approximation which is linear in the field. If, 
for instance, B is the current density operator, 
we have 

Bt = - (e2/mc) A (x, t) 'Y + (x) 'Y(x), 

where >¥ ( x) is the operator of the quantized wave 
function. Using Eq. (1) we can write B in the form 

B = Sp F0B0 + B(l) + '8<2>, 
0 ~ 

B<l) = ~ dT~ dxEp. (x, t +T) ~ dA Sp {F0B0Jp. (x, T +inA)}, 
-oo 0 

{3 

13<2> = + ~ dx Ap. (x, t) ~ dA Sp {F0B0J ~'- (x, i10,)} + Sp F0B 1• 

0 (2) 

Although the quantity ]3<2> contains the vector 
potential, we can show that it is gauge invariant. 
We can verify that this quantity owes its existence 
purely to the magnetization current. Indeed, if 
Et.t = 0 the total change in the average value of B 
is due to B <2>. Also, B <2> does not contain a time 
retardation relative to the vector potential. B <2> 

is thus that value of B which would have been ob~ 
tained if the magnetic field were constant and if 
there were no electrical field. Then, of course, 
only the magnetization current would exist in the 
system. We have studied earlier10 the properties 
and the physical meaning of B <2> for the case 
where B is the current density operator. In the 
present paper we shall not be interested any fur­
ther in the quantity B (2) • 

Let us consider the quantity B(1) in more de­
tail. 

Bearing in mind that in the second quantization 
representation 

B0 = ~ 'Y + (x) b0 'Y (x) dx = 2] (b0)nn'a~an' • 
nn' 

(where b0 is a single-electron operator and the n 
are the quantum numbers of the set of single-elec­
tron states ) we get 

B(l) = 2] (b0)nn'f~~' (f). (3a) 
nn' 

Here 

f~~' (t) 
0 {3 

~ dT ~ dxEp. (x, t + T) ~d), Sp {F0a/:an'Jp. (x, t" +in!,)}. 
-oo 0 (3b) 

We can call the quantity fg.J, ( t) the correction 
to the single-electron density matrix. 

Let 

Ep. (x, t) = Ep. (x, s) exp (ixx + st), s = - iw + v, 

where w is the frequency of the field and v the 
adiabatic parameter, which we shall let tend to zero 
in the final formulae. If we write the operator 
Jt.t (X, T +iliA.) in the second-quantization repre­
sentation, Eq. (3b) becomes 

~~~' (t) = Ep. (x, s) est 2j G':.'/:' (s, [~) ~ i"xjp. (x)mm'dx, (4b) 
mm' 

o B 

G';.;:''(s, ~)= ~ e•~dt"~dASp{F0 exp [~~(T + iliA)]a"tan' 
-<Xl 0 

x exp [-7~(-r: +inA)] a;l;am-}. (4a) 

Let H = H0 + V, then 

exp [~~ (z1- z2)] 

( H~z) (H~z) Vz =exp -ih Vexp ih . 

z1 and z2 are here complex numbers and the 
integration is along an arbitrary contour C in the 
complex plane from z2 to z1• The T c sign indi­
cates an ordering of the operators along this con­
tour in such a way that points on the contour which 
lie nearer to z2 along the contour are assumed to 
be earlier. Using this formula we can write the 
exponents in Eq. (4b) in the following form 

F0 exp [ 7~ (T +iliA) J = z-1 exp {~~ [(T-in~)- (-iliA) I} 
' ~-di{3 

= z-1 exp [ ~~(T-in~) J exp [~ ~ V2dz Jexp (IB'0), 

-ih). 

exp[-7~ (1: + i/i)-)J 
-ihA. ' 

= exp (- H~'A) exp[~ ~ V.dz J exp (-~f) . 
Substituting these expressions into Eq. (4b) we 

write Gffi~n' in a form which is convenient for a 
series expansion in the coupling constant: 
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0 

G;;::~n· (s, ~) = ~ e•"dr:G;;::';' (r:, ~). (5a) 
-co 

a;;::~n' (r:, ~) 

~ 

= ~ dA. Sp {e-~H·Tc exp [k ~ Vzd2 ]<at an·Ldit. (a;l;am·)-r} Z-1• 

0 c 
(5b) 

The integration in the exponent is over the con­
tour C shown in Fig. 1. The sign T c orders the 
operators along the same contour. 

m'n' Gmn is thus some kind of temperature-depend-
ent Green function with the peculiar feature that 
the S-matrix contains an integral over a contour 
in the complex "time" plane. 

+ cL . ._,. _____ _ 
r·-·-·---·-· 
+ 
i 
i 'L-i~fl z 

FIG. 1 

0 

-ifiA. 

2. A DIAGRAM TECHNIQUE TO EVALUATE THE 
FUNCTION am~n 

1. Let Vph be the electron-phonon interaction 
operator 

where bq and bq are the creation and annihilation 
operators of the phonons. We have taken for the 
set of single-electron states plane waves, and f is 
the electron and q the phonon wave vector. After 
expanding the exponent in Eq. (5b) in a series, we 
get the usual Feynman expansion for the function 

k' I GkJ> ( T, {3 ). It occurs as a sum of terms, in which 
every term corresponds to a diagram. All points 
of the diagram lie on the contour C. Each point is 
the start of one and the end of another electron line 
and either the start (phonon emission) or the end 
(absorption) of a phonon line. The points r and 
-iliA. are excepted, and we call them the terminal 
points. 

No phonon lines go to them. The line k 1 ends 
and the line k starts at the terminal point r. The 
line P1 ends and the line p starts at the terminal 
point -iliA.. 

To each electron line going from the point z2 to 
the point z1 there corresponds a factor 

ga. (21, 22) = Sp {e- ~H0Tc (aa.)z, (at)z,} z;-1 

= exp e~ (z1 -z.) { (I - na.) ~f Z:l is earlier than 21 
ifi - n11o 1f 2:l is later than 21 

(here Ea = Ea - J.L ), and to a phonon line a factor 

dq (21, 22) =! Cq \ 2,,Sp {e-P,H0Tc (bq)z, (bt)z,} Z01 

=I cq [2 exp [- iwq (21 - 22)] 

X f (I+ mq) if 22 is earlier than 
\ mq if 2 2 is later than 2 1 

where Ea is the electron energy, wq the phonon 
frequency, and 

Z0 = Sp exp [- ~ (H0 - f.lN)], 

na. = [exp ~(<a:- J.L) + I )-1, 

To each point (except the terminal points) there 
corresponds a factor dz/ili. For each z one must 
integrate along the contour C. Moreover, A. is in­
tegrated from 0 to (3. 

Unconnected diagrams, similar to vacuum loops, 
need not be taken into account as they are cancelled 
by diagrams from the expansion of z. 

k' I We need GkC ( s, f3) to evaluate the single-par-
ticle density matrix [see Eq. (5a)]. It is in fact 
more convenient to evaluate the function* 

,8 

Gk'p' \ -lla k'p' 
kp (s, cr) = .) e Gkp (s, ~) d~. 

0 

We do not consider (3, which enters into na and 
mq, as an integration variable. 

We proceed now to justify the rules for evaluat-
k'pl 

ing GkP ( s, {3 ). These rules will be formulated 
later on. The integration over r and {3 is easily 
performed if each Feynman diagram is broken up 
into a sum of diagrams with different relative ar­
rangements of points. As an example we give in 
Fig. 2 some modified diagrams of second order,t 
which must be considered to be different and which 
originate from the same Feynman diagram. The 
horizontal sections of the "time" contour are 
pulled apart for the sake of convenience. Owing to 
this modification, the order of the integrals in each 
diagram containing n points on the horizontal and 
r points on the vertical sections of the contour C 
is of the form 

o -r ln-1 co (3 

~ &"d-r ~ dt1 • .. ~ dtn ~ e-f3ad~ ~ dj1 ... 

-co o o o o 

Ym J. "'~r-1 

X~ df-~d'l'm+1•" ~ dj,. 
0 0 

*V. V. Tolmachev has drawn our attention to the fact that 
C. Bloch11 has used essentially a similar method to evaluate 
the partition function. 

tWe do not for the present tum our attention to the thin in­
tersecting straight lines. 
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Here t 1, .•. , tn are the real parts of the complex 
"time" points on the horizontal sections of the 
contour C (the imaginary part of the "time" is 
for all these points equal to - nA. ). The quantities 
-tiy 1, ••. , -liym are the imaginary parts of the 
"time" points on the upper vertical section of the 
contour C; and -liym+1, .•• , -liyr the imaginary 
parts of the "time" points on the lower vertical 
section of the contour C (the real part of the times 
is for all these points equal to T ) • 

The time dependent exponents contained in ga 
and dq are best referred to the points. Each point 
z (including the terminal points) will then corre­
spond to a factor exp ( irlABZ ), where lir!AB = EA 
- EB, with EA the energy of the line starting at 
the point z and EB the energy of the line ending 
at the point z. For a point on the horizontal sec­
tion we have z = t -iliA.. We set the factor 
exp (in ABt) along a suitable differential dt, and 
the factor exp (nA.QAB) along dA.. For points on 
the vertical sections we have z = T - illy. We set 
the exponent exp (nrlABY) along the differential 
dy and the factor exp (iQABT) along dT. After 
this, all integrals can easily be evaluated by con­
secutive integrations by part. As a result we get 
the following rules for writing down the expression 
corresponding to the modified diagram for the 
function G~ ( s, a). 

1) A line going from an earlier point on the con­
tour to a later point will be called a regular line. 
To each regular line there corresponds a factor 
1 - na for the electrons and I cq 12 ( 1 + mq) for 
the phonons. For an irregular line we have re­
spectively na and mq I cq 12• 

2) To each point on the upper horizontal section 
of the contour there corresponds a factor (ill) - 1, 

on the lower section a factor (-ill )-1, and on the 
vertical sections ( -1 ); momentum is conserved 
at each point. 

3) We imagine a vertical line taking up consec­
utively the positions I, II, ... in the intervals be­
tween the points on the horizontal section as is 
shown, for example, in Figs. 2b and 2c. 

To each interval there corresponds a factor 
( s + iwMN) - 1 where nwMN = EM - EN, with EM 
the total energy of the lines entering the interval 
on the right of the intersecting line and EN the 
total energy of the lines leaving this region. For 
instance, in Fig. 2c the intersection I corresponds 
to a factor ( s + iwp'p ) - 1 and the intersection II to 
a factor [ s + i ( Wkp - wq) ]-1 where Wkp = ( Ek 
- Ep )/n. 

Similarly we imagine a horizontal line taking up 
consecutively the positions 1, 2, ... between the 
points on the vertical axis (see Figs. 2b and 2c). 
To each vertical interval there corresponds a factor 
(a + nwMN )-1, where EM is the total energy of 
the lines entering the region below the intersecting 
line and EN the energy of the lines coming from 
that region. For instance, in Fig. 2c the intersec­
tion 1 corresponds to a factor a - 1 and the inter­
section 2 to a factor [a + n ( wpk' + wq)] - 1• 

4) Each diagram is multiplied by ( -1 )M, where 
M is the number of mutual intersections of electron 
lines. One must draw here the electron line to the 
point "in the same sense" as the time axis (see 
in Fig. 2d the point indicated by an arrow). 

We give as an example the expression corre-
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sponding to the diagram 2b: 
(-1) (cq)• 

[( 1 - np•.) ( 1 - np) ( 1 + mq)] (iJi)2 s + iwp'p 

1 1 1 
X 0 a+ liwkk' s + iwkk' ok, p'+qOk', P+q· 

Summation over q is implied. 

(6) 

Let us consider some properties of the modified 
diagrams. 

If we transfer one point from the lower horizon­
tal axis to the upper one (or the other way round ) 
without changing its coordinates in the complex 
plane, only the regularity of the lines joining it 
from the right is changed. Also, the sign of the 
expression may change. Examples of diagrams 
obtained from one another by the transfer of a 
point are the diagrams of Figs. 2,b and 2d (the 
transferred point is indicated by an arrow). It is 
convenient to consider such diagrams together, 
transferring the points mentally. For instance, the 
sum of all diagrams obtained from 2b by a transfer 
of points differs from (6) only in that now the square 
brackets contain 

{(1- np) (1 + mq) +npmq} (1-np +np) = 1 + mq -np. 

When all lines from a point on the horizontal 
axis go to the left (right-hand return) the transfer 
of a point changes only the sign of the diagram 
(the sign changes because when such a point is 
transferred the parity of the number of intersec­
tions is not changed, but the upper point becomes 
the lower one and vice versa). We can therefore 
in general neglect diagrams with a right-hand re­
turn. An example is shown in Fig. 3. The arrow 
indicates the right-hand return. 

2. The presence of an interelectronic interac-
tion 

only leads to the occurrence in the diagrams of 
points where four electron lines meet. Such a 
point can conveniently be indicated in the way 
shown in Fig. 4. 

It will correspond to a factor Uq-q' (apart from 
those mentioned in the preceding subsection ). 

3. Let the perturbation V contain the operator 
for the interaction of the electrons with heavy im­
purities 

Vn= ~ Vq-q•ataq·~exp[-i(q-q')rvl, 
q+q' v 

where rv is the coordinate of the v-th impurity 
center. In that case averaging over all rv is im­
plied in the operation Sp { exp ( - {JH') ... }. The 
changes introduced in this case into the diagram 
technique are confined to the following ones: 

F1G. 3 FIG. 4 

a) Impurity points appear along the contour C. 
b) Such a point gives rise to a factor vq-q' 

(apart from these mentioned in subsection 1 ). 
c) The loose ends of the impurity lines are tied 

up in bundles in such a way that there are at least 
two lines going to each knot* (examples can be 
seen in Figs. 5a and 5b ). To each bundle there 
corresponds a factor N: the total number of im­
purity centers. There are no factors correspond­
ing to an impurity line as it does not carry any en­
ergy (in contradistinction to the phonon line). 
They need therefore not be taken into account when 
wMN is calculated for each intersection and when 
the right-hand return is determined. For instance, 
in Fig. 5b there is a right-hand return. In each 
bundle the sum of the momenta of the electron lines 
entering into all the points corresponding to the 
bundle is equal to the sum of the momenta of the 
lines leaving these points. 

We note in conclusion that we can directly draw 
the diagrams for the single-particle density matrix 
fpp'. They will differ from the diagrams des~ribed 
in the foregoing only by the fact that the termmal 
point T will now correspond to a factor 

£1'-(x, s) est ;! (k + k') 6k', k->< 

[see Eq. (4a)] and that one sums over k and k'. 
To emphasize the difference between the dia-

k' ' grams for f p' and for oi<C ' we shall draw the 
diagrams fo~ fpp' in a way which is similar to the 
diagrams for the vertex part in electro-dynamics, 

*The bundling of the impurity lines can be elucidated as 
follows. We consider, for instance, the term of fourth order in 
the interaction. It contains the quantity 

( ~ exp[-i(q1 -q~) rv,]; .. exp[-i(q4 -q~) rv,)) 
V1 ,· 2vav4 

(the angular brackets indicate the averaging over the positions 
of the impurity centers). In this sum there will be a term for 
which v1 = v2 = v, = v4 • To this term there corresponds a dia­
gram with one bundle, where all four impurity lines are tied to­
gether. Furthermore, there will be one for which v, = v., v, "'v •. 
To this term there corresponds a diagram with two bundles with 
two lines going to each of them. There will clearly be altogeth­
er three such diagrams. There are no diagrams where the bundle 
contains only one line (for instance, v, = v2 = v, f, JJ4 ) as there 
is no term with q = q' in the expression for V 0 • 
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with a "photon" wavy line included at the terminal 
point T (see Fig. 6). 

3. THE TRANSPORT EQUATION 

Let us classify the modified diagrams. We call 
an intersection (vertical or horizontal ) which cuts 
only two electron lines and nothing else a free in­
tersection. That part of a diagram which is bounded 
by two vertical free intersections and which does 
not contain free intersections in the intervals be­
tween its points we call a horizontal irreducible 
part. A vertical irreducible part is defined in a 
similar way. A part of a diagram which contains 
points both on the vertical and on the horizontal 
segments which can not be cut by a free intersec­
tion is called an angular part. For instance, in 
Fig. 5a there is one horizontal irreducible part and 
an angular part. 

In the case where the frequency w and the wave 
vector K of the electrical field tend to zero, there 
occurs an important singularity in the perturbation­
theory series. The factors corresponding to the 
vertical free intersections increase without bound. 
Therefore the number of terms cannot be kept fin­
ite in an expansion in any interaction parameter, 
however small. In that case we must compare with 

one another only those diagrams which contain the 
same number of vertical free intersections (and 
hence the same number of horizontal irreducible 
parts ). For instance, we can neglect the diagram 
2c compared with a free line, but we can not neg­
lect diagrams 2a, 2b, and 2d. In exactly the same 
way, we can neglect diagrams 6b and 6c compared 
to 2a, but not diagram 6a. If the frequency and the 
wave vector of the electrical field are thus suffi­
ciently small it is necessary to sum an infinite 
number of terms. This summation leads to an ex­
act integral equation for fpp' which is depicted in 
Fig. 7 ( the first diagram is equal to the sum of the 
next two): 

fpp' (s, a) = rpp' (s, a) (s + iwp•p) - 1 

+ /qq' w:I;: (s) (s + iwp·p~ - 1 (7) 

(summation over q is implied). rpp' (s, a) is here 
the sum of all diagrams which do not contain hori­
zontal irreducible parts without the last free inter­
section on the right; ~t is the sum of all possible 
horizontal irreducible parts. The te~m correspond­
ing to each irreducible part includes· the factors 
from all points occurring in it, from all intersec­
tions (except the last, free ones), and from all 
lines except the two last ones on the left. 



148 0. V. KONSTANTINOV and V.I. PEREL' 

FIG. 7 

Because of the conservation of momentum we 
have p' = p + K, q' = q + K. For simplicity denoting 

w4~~:~ by Wqp we can write Eq. (7) in the form 

too+ a 

~ rp11•(s, a) e~>"da. 
-ioo+a 

(S) 

This equation is a generalized transport equa­
tion. It is important to note that the quantities W 
and r occurring in it do not contain free intersec­
tions. 

If we take into account that the distribution 
function is 

~ 

fp (x) = ~ e/KXfp-x/2. Pt></2dx, 

the meaning of the different terms in Eq. (S) be­
comes clear: the term on the left hand side corre­
sponds to the expression 8fp /8t + Vp Y'xfp when 
K « p, the first term on the right hand side de­
scribes the change in fp ( x, t) under the action of 
the electrical field, and the second one the influence 
of collisions (it will become clear in the following 
that the second term also includes the self-consis­
tent field). 

As examples we shall consider the interaction 
of electrons with phonons and with impurities. 

1. Interaction with phonons. We shall assume 
that the interaction is weak. We can then restrict 
ourselves to second order diagrams when evalu­
ating W. Typical diagrams are given in Fig. 8. 
We shall for simplicity assume that the wave length 
of the electrical field is much larger than the elec-

a 

-·-·-·-c· ·::::;;,.;.;:: . . • ·-
q '=P' ', r _,' p' 

f;'-r 
q=p 

-·-·-·--·-·---·-·-·-·-
c 

----~··· ···-
q+" p+" 

" q p 

-·-·--·-·-·~·-·-·-·-

tron de Broglie wave length and that liw « kT ( s 
= - iw - v ). Diagrams of the type 8b give them a 
contribution to W equal to 

W~~) = 2rrn - 2 JCp-q i2 ( ( 1 + mq-p - np) 6 ( Wpq + Olp-q} 

+ (mp-q+ np) 6 (wpq-wp-q)]. 

to 
The contribution of diagrams of type Sa is equal 

W(a) _ ». 'V W(6) qp - - Vpq LJ pr • 
r 

If we restrict ourselves to diagrams such as 
Sa and Sb, the second term on the right hand side 
of (S) takes on the usual form of the collision term 
in the transport equation, where diagrams of type 
8b correspond to an electron entering a state p, 
and diagrams of type Sa to an electron leaving this 
state. Diagrams of type Sa give a contribution 

·1 aa 
Vp=n-P • 

8p 

The corresponding term in the transport equa­
tion (8) describes the influence of the self-consis­
tent field created by the electrons through the pho­
nons. The potential energy for the interaction be­
tween two electrons has the Fourier components 

Gxoo = -1i2 J c,. J
22wx/(w!- w2}. 

We must note that a study of the actual value of 
this potential requires that the direct Coulomb inter­
action between the electrons is taken into account at 
the same time. 

The diagram of lowest order in the interaction is 
for the quantity r a free line. If K « p, we have 
then 

b 

~--·--

q' /1 p' 

~q-p 
q / p 

f ~------------~ ----~---·-- -.-

FIG. 8 
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r p, P+>< = - eE ( ~, s) est v P dnpjdsp, The authors are grateful to L. E. Gurevich and 

which corresponds to the field term in the transport 
equation. 

2. Interaction with neutral impurities. We shall 
assume the impurity concentration to be small. We 
can therefore restrict ourselves to diagrams with 
one bundle when evaluating W. Typical diagrams 
are given in Fig. 9. As before we shall assume 
K- 0 and s- 0. After transferring each point we 
find that each line occurring in W will correspond 
to a factor 1. One can verify that the sum of dia­
grams 9b, w<b), is the exact probability that an 
electron through scattering at an impurity center 
makes a transition from a state q into a state p per 
unit time (the first term of this sum is the first 
Born approximation). The sum of diagrams of type 
9a gives 

W(a) .. "'w<bl qp = - Uqp L.i pr . 

The second term on the right hand side of (8) 
takes thus the usual form of the collision term, lin­
earized in the field. The diagram of the self-consis­
ent field type is in this case equal to zero ( right 
hand return). 

If we restrict ourselves for the quantity r to the 
zeroth approximation in the impurity concentration 
we obtain the usual transport equation. 

Yu. A. Firsov for helpful discussions. 
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