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We formulate an analytic investigation of the general properties of the cosmological solutions 
of the gravitational equations near a time singularity. One particular class of solutions is 
found to be a generalization of the familiar solution corresponding to a homogeneous and 
isotropic world. A general solution is derived for the case of a centrally symmetric distri­
bution of matter, and its extension to a broader class of solutions is presented. 

THE customarily used (Friedmann) cosmological T;k = (p + s) u;uk + pgik = -i (4u;uk + g;k), Ti = 0. (1.2) 
solution of Einstein's gravitational equations is 
based on the assumption that matter is distributed 
in space homogeneously and isotropically. This 
assumption is very farfetched mathematically, 
apart from the fact that its fulfillment in a real 
world can at best be only approximate. In this 
connection, the question arises of the extent to 
which the essential properties of the resultant solu­
tions are connected with these specific assumptions, 
and primarily as to whether a time singularity 
exists in this solution. 

A suitable way of investigating this question is 
to study the general properties of the solutions of 
the equations of gravitation near a singular point, 
assuming the latter to exist. 

We impose on the reference frame the four addi­
tional conditions 

(1.3) 

so that 

ds2 = dt 2 - df2, 

~n such a system, the equations of gravitation 
( Ri = Tf) assume the following form (see refer­
ence 1, Sec. 92 ): 

Ro - 1 a a 1 {l a - s (4 0 
0 - 2 at Xa + 4 XaX(l - 3 Uoll + I), (1.4) 

o _ 1 {l {l _ 4e 0 Ra- 2 (x{l;a- Xa;{l)- 3 UaU, (1.5) 

{l {l 1 a {l 1 y(l e {3 {l 
Ra = Pa + 2at Xa + 4xyxa = 3 (4UaU + Oa)· (1.6) In the present communication we give two par­

ticular classes of such solutions. One is a general-
ization of the ordinary isotropic solution. The Here K01 (3 denotes a three-dimensional tensor with 
other is connected with the properties of the "grav- components 
itational collapse" of a centrally-symmetrical dis- (1. 7) 
tribution of matter. 

1. CHOICE OF REFERENCE FRAME 

Considering the solution of the equations of 
gravitation near the singular point, in which the 
pressure p and the energy density € of the matter 
go to infinity, it is naturally necessary to use for 
its equation of state the ultrarelativistic relation 

and all further operations of raising and lowering 
the indices and covariant differentiation are car­
ried out in three-dimensional space with a metric 
g01(3; P a(3 is a three-dimensional tensor expressed 
in terms of g01 (3, as is Rik• which is expressed 
through gik· It is obvious that 

(1.8) 

p = ej3. (1.1) where g is the determinant of the tensor gik 

Then the energy-momentum tensor of the matter* 

*We follow the notation used in the book by Landau and 
Lifshitz. 1 In particular, Latin indices run through the values 
0, 1, 2, and 3, while Greek indices run through the three 
spatial values 1, 2, and 3. The square of the interval element 

is written -ds2 = gikdxidxk, so that the matrix of gik has the · 
signature-+++. 

In addition, we use throughout a system of units in which 
the velocity of light and Einstein's gravitational constant are 
equal to unity. 
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(which differs from the determinant I ga {3 I by the 
factor g00 = - 1 ). 

In the general case, the "gravitational collapse" 
takes place on a certain hyper surface t = cp ( xa ) , 
which is a singular surface of the solution of the 
gravitational equations. Since we discuss in the 
present communication only certain particular 
classes of solutions, we shall not investigate here 
the problem of whether there exists in general such 
a transformation of coordinates and time, by which 
this hypersurface can be converted into a "hyper­
plane" t = 0 without violating at the same time the 
conditions ( 1.3). In any case, such a transforma­
tion does exist for the solutions considered below. 

The condition t = 0 on the singular hypersur­
face (together with the condition g00 = - 1) fixes 
completely the choice of the time t. The interval 
element then admits of additional arbitrary trans­
formations of the spatial coordinates, which do not 
involve the time. 

2. GENERALIZATION OF THE ISOTROPIC 
SOLUTION 

The solution of the equations of gravitation, 
corresponding to a homogeneous and isotropic dis­
tribution of matter in space, are most conveniently 
formulated in the "attached" reference frame, 
(that is, moving together with the matter, (see, for 
example, reference 1, Sec. 105 ). This system dis­
plays in explicit form the isotropy and homogeneity 
of the space, by virtue of which the condition g0a 
= 0 is automatically satisfied, and the singularity 
takes place in all of space at one instant of time 
(t = 0 ). In this solution [with the equation of state 
(1.1)) the metric has the form ga/3 Rj aa/3t as 
t- 0, where aa/3 are functions of the coordinates 
corresponding to a constant space curvature. The 
quantities ga/3 are expanded in integral powers of 
t as functions of the time. 

We shall show that this solution is actually a 
particular case of an entire class of solutions, in 
which 

(2.1) 

where aa/3 are arbitrary functions of th~ coordi­
nates. In this case, however, the reference system 
that satisfied conditions (1.3) is no longer strictly 
attached. 

The tensor inverse to (2.1) is 

ga.t> = r 1a"t>- b"t>. (2.2) 

where the tensor aa/3 is the inverse of aa/3• and 
ba.B = aa'Ya.B0byc5· For the tensor Ka,B we have 

where bg = af3Ybax. We shall carry out all the 
operations of raising the Greek indices and of co­
variant differentiation everywhere in this section 
with a time-independent metric aa/3· Calculating 
the left sides of (1.4) and (1.5), accurate to two and 
one principal terms in 1/t respectively, we obtain 

- 3j4t2 + b j2t = +e(- 4u~ + 1), (2.3) 

-} (b;a- b~;p) = - f 8UoUct, (2.4) 

where b = bii. Comparing the right halves of these 
equations and taking account of the identity 

we readily see that E ~ t-2 and ua ~ t2; by virtue 
of the above identity we have here u0 -1 ~ t3 • We 
now obtain from (2 .3) the first two terms of the ex­
pansion of the energy density: 

8 = 3j4t2 - b j2t, (2.5) 

while (2.4) yields the first term of the expansion of 
the velocity 

Ua=-}t 2 (b;a-b:;l3)· (2,6) 

The three dimensional Christoffel symbols, to­
gether with the tensor P a /3• are independent of the 
time in the first approximation in 1/t. Paf3 coin­
cides here with the expression obtained when the 
metric used is simply aa/3· Taking this into ac­
count, we now find that the terms of order c 2 

automatically cancel out in (1.6), while the terms 
proportional to 1/t yield 

p~> + ~b{.l + .!.o~>b = o 
" 4 " 12 " 

( where P~ = af3yp ay). Hence 

b~ = - + P~ + ~ o:P. (2. 7) 

We see that actually the function aa {3 remains 
fully arbitrary. The coefficients ba,B of the next 
term of the expansion of ga ,s are determined by 
(2. 7) from the specified a, and these together with 
expansions (2.5) and (2.6) yield the energy densities 
and the velocities. We note that as t- 0 the ener­
gy distribution approaches homogeneity. As re­
gards the velocity distribution (2.6), it can be trans­
formed by taking account of the relationship 

which is the corollary of the identity 

P~;t>- -}Fa~= 0, 

which is satisfied, in turn, by any simplified curva­
ture tensor Pa f3. We then have 

(2.8) 
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that is, in this approximation the velocity is the 
gradient of a certain function and its curl vanishes 
(a nonvanishing curl appears, however, in the next 
terms of the expansion). 

Conditions (1.3) admit also of the possibility of 
arbitrary transformations of the three spatial 
coordinates, without involving the time. These 
can be used, for example, to diagonalize the tensor 
aaf3· Therefore, this solution actually contains a 
total of three "physically different" arbitrary 
functions of the coordinates, specified by the initial 
conditions (with respect to time) of the problem. 

The Friedmann solution corresponds to the par­
ticular case when Pg = const.· <5~. 

It can be shown that the solution obtained is the 
only one in which the collapse takes place in a 
"quasi-isotropic" manner, by which all the compo­
nents ga {3 vanish as the same power of t. 

We note also that this solution exists only in the 
presence of matter, that is, only in a non-empty 
space. 

3. CENTRALLY SYMMETRICAL COLLAPSE 

Proceeding now to the problem of the collapse 
of a centrally-symmetrical distribution, we note 
first that its general solution should contain only 
two "physically different" arbitrary functions of 
the radial coordinate. This number follows from 
the fact that the arbitrary initial centrally-sym­
metrical distribution of matter is specified in terms 
of the initial distributions of its density and radial 
velocity. This problem has no "degrees of free­
dom" corresponding to a free gravitational field, 
for such a field (gravitational waves) cannot have 
central symmetry. 

We write down the centrally-symmetrical ele­
ment of an interval that satisfies conditions (1.3) 
in the form 

where f.l and A are functions of the time and of the 
radial coordinate r, and the 4-velocity of matter 
has only one (radial) spatial component. We shall 
number the coordinates x 1•2•3 = r, 6, cp. 

A clear idea of the interrelation between differ­
ent particular solutions and the general solution of 
the essentially-symmetrical collapse problem can 
be gained by considering the formal problem, with 
equation of state p = 0 (which, naturally, is actually 
inapplicable close to the instant of collapse). In 
this case the equations of the centrally-symmetrical 
field admit an exact solution (first obtained by 
Tolman2 ) and the character of the collapse can be 
readily explained by investigating this solution. 

When p = 0 the reference frame can be chosen 
such that, simultaneously with satisfying the condi­
tions g00 =-l,g01 = 0 [that is, ds 2 in the form (3.1)] 
the velocity u1 of the matter vanishes, i.e., the 
reference frame is attached (see refer.ence 1, Sec. 
97, problems 4 and 5 ). Here, however, the collapse 
is not simultaneous in all of space. In such a ref­
erence frame, an exact solution of the equations of 
gravitation is given by the following formulas. 

We denote 

e~'-(l,r)/2 = R (t, r). (3.2) 

Then eA is determined by the formula 

e" = R I ( 1 + f), (3.3) 

where f ( r ) is an arbitrary function, satisfying 
only the condition 1 + f > 0. The function R (t, r) 
is given in implicit form by 

t-ID (r) = VfR 2 + FR!f 

- Fr'1'sinh-1 VtR; F fort> o, 

t-ID (r) = VfR 2 + FR If 

+F(-f)-'1•arcsinV-fR!Ffot" f<O (3.4) 

(the case f = 0 is obtained by going to the limit in 
(3.4), but does not differ qualitatively from the 
general case). Finally, the energy density is 

(3.5) 

(the prime denotes differentiation with respect to 
r ). Here F ( r) and <I> ( r) are two additional arbi­
trary functions of r. Inasmuch as (3.1) admits of 
still another arbitrary transformation r 
- r ( r' ), the solution written down actually con­
tains, as it should, not three but only two "physi­
cally different'' arbitrary functions. 

The instant of collapse corresponds to the 
hyper surface t =<I> ( r ). Near this hypersurface we 
obtain from (3.3)- (3.5) 

s =- 2F' 13FID' (t-Ill). (3.6) 

We see that the general solution leads to a very 
unique character of collapse: the radial lengths 
( in the reference frame considered) increase 
without limit as t- <I>, while the peripheral dis­
tances tend to zero;* the volumes also tend to zero, 
while the density of matter tends accordingly to 
infinity. 

*The geometry on the "plane" passing through the center 
is in this case the same as would occur on a conical surface 
of revolution which is stretched along its generatrices and at 
the same time compressed in all its circumferences. 
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The particular case <I> = const (or, what is the 
same, <I> = 0) leads to a collapse of an entirely dif­
ferent nature. In this case we obtain the following 
limiting formulas 

4 et< = r _ p213t4/3 3 )
4/3 

\2 , e'- = - t ( 2 )2/3 f'2 4/3 

3 4F4/3 (f + 1) , 8 = 312. 

(3. 7) 

Here all the distances tend to zero in a "quasi­
isotropic'' manner - proportional to the same 
power of t, while the energy density becomes 
homogeneous in the limit.* 

Finally, when F = 0 we have R = ..ff( t - <I>), 
while eA. tends to a constant limit and E vanishes 
identically. This is a fictitious case: the trans­
formation of r and t reduces the metric to a 
Galilean metric in empty space. t 

Let us return to the problem of collapse with an 
equation of state p = E/3. The reference system 
with metric (3.1) is no longer attached, but we can 
assume the collapse to take place in it simulta­
neously in all of space (the possibility of such a 
choice of time is proved by the fact that we obtain 
as a result a general solution of the problem with 
the required number of arbitrary functions ) . 
Equations (1.4)- (1.6), expressed in terms of the 
functions A. and ll· have the form 

Rg = +~2 + -i-~2 + +}. + ~ = -fs(3 + 4u~e-"), (3.8) 

m = ~·- + ~[Jo' + +~(l-' = +sui( I + uie-")112, (3.9) 

R~ = [e-A (ffl-')!- (l-"- + (l-'2)] 

+ f (): + ~~ + + }_2) =-i-s (1 + 4uie-"), 

R~ = [e-t< + ~ e-" (f ll-'t-' _ ll-" _ [J-'2)} 

+ f(~+f~j_+ ~2) = fs 

(3.10) 

(3.11) 

(the prime denotes differentiation with respect to 
r and the dot differentiation with respect to t; the 
expressions in the square brackets in (3.10) and 
(3.11) represent P} and P~ respectively). The 
solutions of these equations near the singular point 
have, as we shall now show, the same character 
as when the equation of state is p = 0. 

We seek e,A. and ell in the form of series in 

*The gravitational collapse of a centrally-symmetrical dis­
tribution of matter with p = 0 was considered by Oppenheimer 
and Snyder. 3 However, their choice of particular solution, dic­
tated by the choice of a homogeneous initial distribution of 
density of matter, corresponds to the case (3. 7) and, as we 
see, does not reflect at all the properties of the general case. 

tFor this purpose it is necessary to introduce instead of t 
a new variable R = Vr(t- ~). after which the interval is re­
duced by suitable transformation r = r(R, T) to the form 
ds2 = dr2 - dR2 - R2(sin28dq>2 + d82). 

powers of t2/3, beginning with C 2/3 and t413 respec­
tively; A. and ll now assume the form 

A= -TInt -f- t-<o> + t-<1>t213 + ... , 
(3.12) 

where A.< 0>, ll <0>, A. 0 >,and ll(t) are functions of r. 
The energy density and th,e radial velocity are also 
expanded in powers of t 213; the first terms of the 
expansion, as verified by subsequent calculation, 
are 

(3.13) 

Substitution of these expressions into (3.8) and 
(3.11) causes the terms of order C 2 to disappear, 
while the terms of order c 4/a yield 

f(t-<1>- 2(l-(1)) = s<o>, 2[-C-<1> + f t-<1> + 3exp (- (l-(o)) = s<o>, 

hence 

fl-(1) =-fa [s<o> + 3 exp (- fi'<o>)], 

t-<1> =f[4s<0>-3exp(-fl,(o))]. (3.14) 

In (3.9), the terms proportional to 1/t yield 

s<0>u<o> = ~ ,.<01' (3.15) 
4 r ' 

and Eq. (3.10) produces nothing new. 
Thus, these three arbitrary functions [for exam­

ple ll <O> ( r ), A. <0> ( r ), E< 0> ( r)], of which two are 
physically different, remain in this solution, i.e., 
this is the general solution of our problem.* 

This general solution does not contain the 
quasi-isotropic collapse, which corresponds to the 
particular solution of the system (3.8)- (3.11) 
with two arbitrary functions (one of which is 
physically independent).t In this solution eA. and ell 
vanish in similar fashion (proportional to t); the 
corresponding expansions are of the form 

fl.= Int +ll-<o> +p,<1> t + ... , "A= Int + )..<o> + )..<1> t +···, 
e = 3j4t2 + e<lljt + ... , u1 = t2u<o> +... . (3.16) 

Thefunctions A.<0>(r) and ll< 0>(r) canbespecified 
arbitrarily, after which the following expansion 
coefficients are given by 

IL(1) = ...!_ p11_ :!__p22 )..(1) = -~ p1 +...!_ p2 
,. 18 9 ' 18 1 9 2• 

where Pl and P~ are calculated from expA.<0> and 

*The boundary condition at the center requires that 
exp p.<0>-> 0 as r ... 0 (the length 27Ttt. exp p. 0 of the circle 
with center at the origin should tend to zero as r ... 0). 

tThe fictitious solution mentioned above does not arise at 
all when the time is fixed by choosing the condition t = 0 at 
the instant of collapse in all of space. 
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exp 11 <0 >. This solution enters as a particular case 
in the general quasi-isotropic solution (2.1) ob­
tained in Sec. 2. Equations (3.17) are, naturally, 
exactly equivalent to (2.5), (2.7), and (2.8). 

4. GENERALIZATION OF THE CENTRALLY­
SYMMETRICAL SOLUTION 

The solution obtained for the centrally-sym­
metrical problem is actually a particular case of a 
more general class of solutions. We shall give 
here this solution in its main final form, without 
dwelling on its construction. 

We seek the solution in the form of expansions 
in powers of t2/a, the first terms of which are 

gu = t-'1• (a<ol +aU> t''•), 

(4.1) 

(the indices a, b, and c run here and below through 
the values 2 and 3). In this notation, the choice of 
the direction x 1 is the only one by which the lowest 
power of t ( c 2/3) enters only in g11 ; the coordinate 
x1 admits only of a transformation of the form x' 1 

=xt1(x1). The coordinates x2 and x3, on the other 
hand, admit of additional arbitrary transformations 
of the general form x' a = x' a ( x 1, x2, x3 ) . We shall 
use these transformations to cause the two quanti­
ties b~~ to vanish. 

The corresponding distributions of the density 
and 4-velocity of the matter will have, in the same 
approximation, the following form: 

Ua = U~l) t. (4.2) 

To check these expressions and to determine 
the relations between the functions introduced 
therein, we substitute (4.1) and (4.2) into (1.4) 
- (1.6), retaining those senior terms (that is, 
those of highest order in 1/t), which are fully ex­
pressed in terms of the quantities in (4.1) and (4.2). 

Equation (1.5) with a= 2 and :3 yields in the first 
non-vanishing order 

R~ = _ _!_~In a<0l = 0 
2t axa , 

that is, a<O> can be a function of the coordinate x 1 

only. The freedom still remaining in the choice of 
the latter can be used to set a <0> equal to unity. 
Then the metric assumes the form (in the accu­
racy employed here) 

(4.3) 

The choice of all three coordinates is then fixed 
accurate to inessential transformations of the type 

x'a = x'a (x2, x3 ), which involve only the coordi­
nates x2 and x3• 

We now obtain, after a calculation 
1 (0) 

Ro = __ ( (1)_b(1)c}= __ a_ , 
o 3t4/3 a c t4/3 

(4.4) 

Ro = .!_~I b(O) = 4e(o) (O) 
1 2t ax1 n 3t u1 ' (4.5) 

Ro = - ~1- [b(l)c - b(1)c + _!_ (I) J - 4a(O) (1) 
a 3t1/3 a,c c;a 2 a;a - 3t1/3 Ua ' (4.6) 

Rb = _.!___ [i Kob + ~ b(1)b + ~ ob (a(l) + b(1)C>] - a(O) ob 
a t4/3 2 a 9 a 9 a c - 3t4/3 a 

(4. 7) 

(the equations for Rl and Rf yield nothing new). 
All the operations of raising the indices a, b, c 
and covariant differentiation are carried out here 
in two-dimensional space (with metric b~~) on the 
two-dimensional tensor hi~ and scalar aO>; in 
this notation, the contravariant metric tensor, 
which is the inverse of the tensor (4.3), is 

gll = [2/3 (} _ a{l)f2/3), gab = t-4/3 (b(O)ab _ f2/3b(l)ab), gla = 0. 

Next, K denotes a two-dimensional scalar curva­
ture made up of bab (as is known, the two,...dimen­
sional analog Kab of the tensor Rik reduces to a 
scalar: K~ = Y2K<5R); b<0 > is the determinant of the 
tensor b~b (the principal term in the determinant 
of the metric tensor gik is - g = t 2b<0>). 

From (4.4) and (4. 7) we obtain 

a<1l = ~ e(O)- _!_ K b(1)b = - _!__ el (e(O) + _!!__ K) 
li 10 ' a 10 a 2 • (4.8) 

Taking these formulas into account we obtain from 
(4.5) and (4.6) 

3 a 
U (o) _ - -Jn b(O) 

1 - se<o) ax! , (4.9) 

Thus, the solution obtained contains four arbi­
trary functions of the coordinates, for example, the 
three quantities bi06 and E<0>. With the aid of 
these quantities, (4.8) and (4.9) define the first 
correction terms in the metric and in the distribu­
tion of the velocity of mll.tter. 

In the particular centrally-symmetrical case, the 
coordinates x2 and x 3 are angular variables, while 
the surfaces x 1 = const have a curvature K differ­
ent from zero.* In the generalized solution this is 
not essential, and all the coordinates can have an 
arbitrary geometrical character (thus, the solution 
can be "cylindrical" or "plane"). 

In the absence of matter, there is naturally no 
centrally-symmetrical solution, since the free 
gravitational field, as already noted, cannot have 

*Equations (3.14) and (3.15) correspond exactly to ( 4.8) 
and (4.9), and a< 1> = A(l>, b< 1>~ = b< 1>~ = IP>,g<O>and 

K = 2 exp ( -!L (O)) are functions of x1 = r only. 
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such a symmetry. The generalized solution, on 
the other hand, yields a definite class of solutions 
for empty space, too. In this case the right halves 
of (4.4)- (4. 7) vanish. From (4.4) and (4. 7) we ob­
tain 

a(l) = _ _!_K 
10 ' 

(4.10) 

after which Eq. (4.6) is identically satisfied, and we 
obtain, from (4.5), b<0> = f (x2, x3 ). This arbitrary 
function of the coordinates x2 and x3 can be set 
equal to unity, say, by the still permissible trans­
formations of these coordinates (in the transform­
ation xa = xa( x' 2, x' 3 ) the determinant b<0> is 
multiplied by the square of the Jacobian a ( x2, x3 ) 

/8(x' 2, x' 3)]. As a result, onlytwoarbitrary 
functions remain, namely the three quantities b~~. 

connected by the condition b<0> = 1. We thus ar­
rive at a class of solutions, containing two arbi­
trary functions of the coordinates, for empty space. 
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