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A consistent theory of a decay of nonspherical nuclei is developed which is based on a suit­
able generalization of the quasiclassical approximation in quantum mechanics. Formulas are 
obtained for relative intensities of the fine structure lines of a rays, and also for the a-decay 
constant, and for the angular distribution of a particles emitted by oriented nuclei. A new 
method of measuring the quadrupole polarization of oriented nuclei is proposed. 

1. INTRODUCTION 

DuRING the last 30 years the nature of the theo­
retical interest in the phenomenon of a decay has 
been greatly altered. In the early papers1 the prin­
cipal attention was devoted to the fact that the a 
decay process is a quantum-mechanical tunnel ef­
fect. At the present time the aspect of greatest 
immediate interest appears to be the use of a de­
cay for the measurement of nuclear deformations. 
Indeed, the use of other methods of measuring de­
formations, of which the most important one is 
Coulomb excitation, 2 has so far turned out to be 
not very effective in the range A > 220, owing to 
experimental difficulties. 

An essential factor in the following discussion 
is that the complete wave function for the parent 
nucleus can be represented in the form 

'Y = ~'i'tk(r, w) <p~<pk, (1.1) 
lk 

where cpf! and <Pk are the wave functions for the 
stationary states of internal motion of the a par­
ticle and the daughter nucleus respectively. The 
expansion coefficients 1/Jik depend on the position 
vector r of the a particle relative to the center 
of mass of the daughter nucleus and on the Eulerian 
angles w which characterize the orientation of the 
nonspherical daughter nucleus with respect to fixed 
axes. Formula (1.1) holds both inside and outside 
the daughter nucleus, but the qualitative behavior 
of the coefficients 1/Jik in these two regions is 
quite different. 

In the external region due to the effect of the 
Coulomb barrier the functions 1/Jik(r, w) decay 
rapidly with increasing r. The decrement of this 
decay depends strongly on the energy of internal 
excitation in the state cpf!<Pk· As a result, the 
only components 1/Jik ( r, w ) significant in the 
asymptotic region r -- oo are those correspond-

ing to relatively small energies of internal exci­
tation. In this case we have to take into account 
only the ground state i = 0 for the a particle, 
while the index k denotes several of the lowest 
levels of internal excitation of the nonspherical 
daughter nucleus. Thus, in fact, only a small 
fraction of the components of the total wave func­
tion shown in the sum (1.1) manifests itself in a 
decay. The task of the theory consists in finding 
these few 1/Jok ( r, w ) in the region external to the 
nucleus. 

It should be emphasized that in this region the 
previously mentioned components 1/Jok<P?<Pk are 
not strongly interrelated. After the emission of 
the a particle the internal state of the daughter 
nucleus <Pk can change only as a result of being 
affected by its Coulomb field.* An estimate shows 
that the probability of such a transition is negli­
gibly small. Therefore we can write for each of 
the 1/Jok ( r, w) outside the nucleus its own "single­
particle" SchrOdinger equation [cf. (2.3)]. It turns 
out to be fairly complicated, since the electrostatic 
interaction between the daughter nucleus and the 
a particle is not a central one, and the wave func­
tion 1/Jok depends, generally speaking, on all the 
five variables of the system: the three Cartesian 
coordinates r of the a particle, and the two an­
gular variables v =cos ® and .P, which we have 
previously denoted by the single letter w. Never­
theless, the generalization we obtained for the 
quasiclassical method enabled us to solve this 
equation. t As far as we know, the quasiclassical 

*We do not consider the case when such a change occurs 
as a result of the rotation of the daughter nucleus. In other 
words, it is assumed that in the spectrum of the nuclear energy 
levels the rotational bands corresponding to different internal 
states <i'k do not interact with each other. 

tSome of the results of the present work based on this 
generalization of the quasiclassical approximation have been 
published in preliminary form without a derivation in the form 

102 



THEORY OF ALPHA DECAY OF NONSPHERICAL NUCLEI 103 

approximation has not been previously used for 
the solution of partial differential equations con­
taining so large a number of independent variables. 

The interaction between the different configura­
tions cpfcpk is extremely great inside the nucleus. 
This can be written as the condition la « R0, 

where la is the mean free path of the a particle 
and Ro is the nuclear radius. Therefore, in ad­
dition to the l/Jok in which we are interested, the 
sum (1.1) contains many other components l/Jik· 
The normalization condition has the form 

_2Jw~k= 1; w~k=~dw~ l'i'tk(r,w)l 2dr, (1.2) 
Q v 

where w~ are the corresponding "internal proba­
bilities"; the integration is carried out over the 
volume of the daughter nucleus. The components 
lf!ok which actually occur in a decay apparently 
correspond to only a very small fraction of the 
total internal probability: 

(1.3) 

Since the different components 1/!ikcpfcpk of the 
total wave function (1.1) are closely interrelated, 
there exists no single-particle SchrOdinger equa­
tion for each individual l/Jik(r, w). However, for 
those few configurations cp?cpk which are of the 
greatest significance for a decay, the form of the 
function l/Jok( r, w) inside the nucleus can be es­
tablished. 

First of all, we have 

'i'ok(r, w) = F (w), (1.4) 

since as a result of the homogeneity and isotropy 
of nuclear matter and of the condition la « R0 

there exist no special points singled out within 
the nucleus. The dependence of l/Jok on the Eule­
rian angles w is uniquely determined by the val­
ues of the total angular momentum of the parent 
nucleus n and of its projection M on a fixed axis, 
both of which remain constant in time: 

Q 2 'Y = Q ( Q + 1) 'Y, Qz'Y = M'f". (1.5) 

The only function that satisfies (1.4) and (1.5) 
has the form 

rJiok (r, w) = XrJi~~: K(v, <D), 

where x is a constant; (1.6) 

of separate communications,' from which it can be seen that the 
problem has been completely solved analytically. Later articles 
have appeared4 in which it is asserted that high-speed elec­
tronic computers are necessary to solve the Schrodinger equa­
tion describing the <X decay of a nonspherical nucleus and that 
an analytic solution of the problem is impossible. We can not 
agree with such assertions. 

MJM1 ;K (v, <D) =Jf(2 Q + 1)/4JtD~M (0, v, <D) (1. 7) Tro ~ 

is the rotational wave function for the nonspherical 
nucleus, K is the projection of the angular momen­
tum of the daughter nucleus on its symmetry axis 
in the state of internal motion under investigation, 
and D~M ( a, cos B, y) is a generalized spherical 
harmonic. 5 On the nonspherical surfaces of the 
daughter nucleus, expression (1.6) plays the role 
of the boundary condition for the Schrodinger equa­
tion satisfied by the function l/Jok(r, w) in the ex­
ternal region. 

It is of interest to note that condition (1.4) leads 
to characteristic selection rules for the a decay 
of nonspherical nuclei. Indeed, the initial state of 
the parent nucleus is also characterized by a cer­
tain value of the component of the angular momen­
tum along the nuclear symmetry axis K0; the cor­
responding rotational wave function has the form 
lf!~~;Ko ( v, <I>). In processes such as the forma­
tion or breakup of an a particle, which are char­
acterized by large energies and small times, the 
quantum number K is conserved. On comparing 
with (1.6) and on taking into account the conserva­
tion of parity, we obtain 

(1.8) 

where II is the parity. Precisely such selection 
rules were established earlier by analysis of the 
experimental data; 6 the so-called favored a tran­
sitions satisfying these selection rules turn out to 
be the most intense ones when all other conditions 
remain the same. The unfavored transitions, for 
which (1.8) is violated, are considerably less in­
tense and we will not consider them. 

2. PROBABILITY OF a DECAY 

Let us obtain the wave function l/Jok ( r, w ) in 
the region exterior with respect to the daughter 
nucleus, and let us determine the probabilities of 
excitation of rotational levels of the daughter nu­
cleus corresponding to its internal state cpk. In 
carrying out the calculations we shall utilize two 
coordinate systems: a fixed system x, y, z; v, <I> 

and a system tied to the nucleus ~. TJ, t; v, <I>, 
which is rotated with respect to the fixed system 
through the Eulerian angles <I>, ®, 0. The corre­
sponding Hamiltonian has the following form 

H = -(n2j2m) V2 + Hrot + U, 

Hrot = (1i2j2/) (J2 - .Q (.Q + 1 )], 

where m is the reduced mass; J2 = Q ( -1 )2 

= n2 - 2nl + 12 is the square of the angular mo­
mentum of the daughter nucleus, 1 is the orbital 
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angular momentum of the a particle, and I is the 
moment of inertia of the daughter nucleus corre­
sponding to the internal state 'Pk· 

In the system ~. 71, t; v, <P the shape of the 
surface of the daughter nucleus is determined by 
the equation 

R. (11) = R.o + ~ (11) = R.0 { 1 + 2: a.nPn (11) }. 
n 

(2.1) 

where IJ. =cos J. The potential energy of the elec­
trostatic interaction U depends only on the vari­
abies r and IJ.; in the approximation linear in 
an we have 

(2.2) 

where Ub = 2Ze2/Ro is the height of the Coulomb 
barrier and Ze is the charge of the daughter nu­
cleus. 

The form of the operators n and 1 is well 
known in the system x, y, z; v, <P; the transition 
to the system ~. 71, t; v, <P can also be easily 
carried out. 7 On taking into account (1.5) we ob­
tain the Schrooinger equation 

~~ + + ~; + ( 7 + :. ) ( (1 - !l-2) ~~ 

- 2(1- ~t + 1 -= ... ~~ ] 
+2 7 {-V1-v2 (Y1-v-2 cosrpa:~t 

--~'-.sin a•q, ) iM 
+Vi- .. • cp aq>av +Yi-v• 

aq,. 
--~'--cos rp-) Vi- .. • aq> 

(2.3) 

Here E is the energy of decay to the rotational 
level J = Q; the indices i = 0 and k are omitted 
from the wave function lf!ok· 

We obtain a particular solution ¢JZ of equa­
tion (2.3), which describes at infinity an a par­
ticle of angular momentum l moving away from 
the nucleus and a daughter nucleus in a rotational 
state with angular momentum J. Having in mind 
the application of the quasiclassical approximation, 
we perform the substitution 

'i'Jt(r, 11. qJ, v, <D)= Jfmj1iY~t(v, <D, 11· cp) e"<'·~'·;;.v(2 .4) 

and seek a in the form of the series a = a _1 + a0 

+ a 1 + a2 + . . . (this corresponds in fact to an ex­
pansion in powers of the parameter 1/KRo « 1, 
where K is the wave number of the a particle 
on the surface of the nucleus). The angular func­
tions YYfl satisfy the equations 

0 2Y'AM = o (O + 1) Y~~M, ox~~M = MY~~M, 

PY~t = l (l + 1) Y~t, 

OlY~tM = -} [0 (0 -1- 1) -1- l (l -1- I)- J (J -1- I)] Y~tM (2.5) 

and the normalization condition 

(2.6) 

where 

dw = dvd<D, do= d11dqJ. 

We represent each of the quasiclassical func­
tions in the form of a series in powers of the de­
formations an: 

cr_1=a~~+a~1 +a~~+· .. , a0 =a~o>+a~1>+a~z>+ ... , 
a1 =a<~>+ a~1) + ai2) + ... 

etc. On taking {2.2) into account, this yields 

(
d0 (0) )2 

-1 k2 
-~ =- Jl• 

do(O) ao<1> 3a R "+1 
2-=!. - 1 = xg"_n_ (~) Pn ({1-) • · · 

dr ar LJ 2n + 1 r ' 
n 

do(O) do(O) d2o(o) 2 do(O) 
2 -1 0 + -1 + - -1 0 
~{if dr• r ~-= · · ., 

where 

k Jt = V k~- x~R.o I r -l (l + 1) I r 2 , k; = 2ms I 1i2 , 

s = sJ = E- (1i2 1 2I)[J (J +I)- o (O + 1)1, 

x~ = 4mle2 I n2R.0 • 

(2. 7) 

A solution of {2. 7) satisfying the boundary con­
dition at infinity has the form 

r 

a<o> = i \ k dr a<o> = - In (Jf- ik . r) 
-1 ) Jt ' 0 Jl ' 

an 

3 a 
00~ (R )n+1 dr a(l) =- ix2 ~-n-Pn({l-) ~ -. 

-1 2 b..::::; 2n + 1 r kJt 
n r 

{2.8) 

We do not take into account further terms in the 
double series for the function a { r, IJ., cp, v) 
since calculations show that they are negligibly 
small. In accordance with (2.4), {2.6) and {2.8) 
the flux of a particles in the state ¢JZ is nor­
malized to unity: 

(2.9) 

r-> oo 

At the turning point r = aJz the wave number 
kJz vanishes. We can use Eqs. (2.8) in the region 



THEORY OF ALPHA DECAY OF NONSPHERICAL NUCLEI 105 

r < aJz. if we make the substitution kJz- iKJZ· 
We represent the true wave function 1/Jok in the 
form of the superposition: 

(2.10) 

At the nonspherical surface S of the daughter nu­
cleus, i.e., for r = R (p. ), we have in the required 
approximation 

cr~~ (S) = cr~~ (Ro) l1=o 
lt>.E=O 

1 1 
-x00 (RoHUt) +2iB~E+2r1 l(l+ 1), 

The transition to the rotating system ~. TJ, t; v, 4> 
is accomplished with the aid of the generalized 
spherical harmonics nZ. On taking (1.7) into ac­
count we easily obtain 

Y OM -. f2.T+T "V CO, K+m,r,OM;'K+m ( <D) y ( ) 
Jl = V 21'f+i...::..J JKim "(rot · V, lm [!-, cp · 

.m (2.17) 

We substitute (2.17) into (2.13) and integrate 
over w, and also over the angle cp. In accordance 
with (1.2) and (1.6), the constant x is related by 
the equation w a = o/3 7r RSx2 to the internal proba­
bility of formation of an OL particle in the nucleus 
w OL. As can be seen from (2 .1 0), in the case of 

a~> (S) =a~> (R0 ) \l=o , a<0> (S) = a<0l (Ro) \l=o . (2.11) the normalization (2.9) the probability per unit 
1 l tl.E=O 0 0 tl.E=O time of decay to the rotational level of angular 
Here we have carried out an expansion in terms momentum J accompanied by the emission of an 

of the dimensionless small parameters OLn, l ( l + 1 )/ OL particle of angular momentum l, is equal to 
K2Rij and LlE/E, where .:lE = LlEJ = E -e:J= (n2/2I) w'JZ =I bJzl 2• As a result, after interchanging the 
x [ J ( J + 1 ) - ~ ( ~ + 1 ) ] is the energy of excitation indices of the Clebsch -Gordan coefficients, we 
of the daughter nucleus measured from the level finally obtain* 
J = ~. 

It can be easily shown that the expansion coef­
ficients are given by 

_ 1 (x~Ro -1 x ) 
iE - E -k- tan k + xRo , (2.12) 

where k = kE = .J 2mE /li, K = K~0 (R0 ) = .JKt- k 2 . 

We substitute (2.11) into (2.4), (2.10), and the bound­
ary condition (1.6). Taking (2.8), (2.1), and (2.6) 
into account we obtain, after straightforward trans­
formations, 

(2.18) 

where 

(2.19) 

1 

X1 = ~ exp {~ ~nPn (11-)} P1 ([1-)dp;. 
o n 

(2.20) 

Here we have utilized the fact that the shape of the 
daughter nucleus possesses mirror symmetry: no 
odd values of n appear in the right hand side of 

\ OM·K \ OM* {"" } d X ~ dl!Xfirot ' ~ Y Jt exp ..:::.J ~np n (t.t.) 0, (2.13) (2.1). 
n 

aoo oo n+I 
{ 3x~ l- \' (R")n+I dr . \ (R") dr ]} ~n = xRo- 2 (2n + 1) ~ r Xoo + l ~ r ko.o OCn, 

R, aoo (2.14) 

{ (x~Ro -1 x )} r = exp -2 -k- tan 7i -xRo . (2.15) 

Here r is the penetrability factor for the Coulomb 
barrier in the case of a spherical nucleus of radius 
Ro. 

In the laboratory system 
note the angular function Y 
Then evidently we have 

x, y, z; v, 4> we de­
"'~M by YJZ (v, 4>, p., cp). 

-oM OM JM' K 
YJI = ~ CJM'lm'~rot' (v, <D) Ylm' (f!-, rp), (2.16) 

M'm' 

where C are the Clebsch-Gordan coefficients 
and Yzm are the normalized spherical harmonics. 5 

With the aid of (2.18) we obtain the useful rela-
tion 

WJ'l I WJI = w J'l I WJI = (C~~Io/ c~~lo)2 exp (- jED.EJ'J), 

(2.21) 

where LlEJ'J= (ti2/2I)[J'(J' + 1) -J(J+ 1)] is 
the separation between the rotational levels of an­
gular momenta J' and J. 

The total probability of excitation of a rota­
tional level with angular momentum J is obtained 
by summing the second of formulas (2.18) with re­
spect to l. We normalize the relative probability 
w J by the condition w~ = 1. As a result of this 
we obtain 

*Independently of the present author and practically simul­
taneously with him, Froman• has obtained a formula similar to 
(2.18), based on semi-intuitive considerations. 
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J+ll 

w J = exp (- r E !lE) ~· Bt (CNkto)2 

l=/J-01 

(2.22) 

where the prime on the summation sign indicates 
that the summation is taken only over even values 
of l. 

For many purposes it is sufficient to consider 
only the quadrupole deformation ~ = RoCI' 2P2 (~) 
which exceeds considerably the other terms in the 
sum (2.1). In this case the substitution Xz- Xz 
should be performed, where 

1 

Xt (~) = ~ ellP,(~J.l P1 (tJ-) dp., 
0 

~ = ~2 = [; ><Ro (I - k2 I 2x~)- i2k3Ro I Sxg] cx2 • (2.23) 

On summing the second of relations (2.18) over 
all J and l, we obtain the Cl'-decay constant. 9 In 
the special case of even-even nuclei we have g 
= K = 0; substitution into (2.22) and (2.18) leads 
to further simplifications. 3•9 

3. ANGULAR DISTRIBUTION OF a PARTICLES 

The angular distribution of the Cl' particles 
emitted by oriented nuclei depends on the quantum 
number M. In accordance with (2.10), (2.4), (2.8), 
and (2.16), we have in the laboratory system x, y, 
z; v, ci> as r - oo 

m :1 (OJ , (OJ V-
~M = h ~ bJl exp (o_1 -,- o0 ) 

JlM'm' 

ClM JM'·K X CJM'lm'~rot ' (v, <D) Ytm' (p., cp). (3.1) 

In the general case we have 1/J = ~ CMI/JM· The 
spatial density J 11/J 12 dw of the a particles 
breaks up into a sum of independent components 
corresponding to different values of J. To go over 
to the current density j we must multiply each of 
these components by the corresponding value of the 
velocity like: /m. The expression for the differen­
tial intensity has the form jr2do. The final aver­
aging over the spin orientations of the parent nu­
clei in the initial state is achieved by the replace­
ment cM,cM"- pM'M"' where p is the spin 
density matrix of the parent nuclei. After some 
straightforward transformations we obtain 

dW = y 4~t(2n +I) ~ PM'M" ~cg~:.L.M'-M" Y L,M'-M" (tJ-, cp) 
M'M" L 

X ~ (-I)J-Il Y(2l' + 1)(21" + l)b;l.bJl' 
Jl'l" 

where g = k/Kf,Ro. W (abed; ef) are the Racah co­
efficients. 

At not too low temperatures, when the nuclear 
orientation is not very pronounced, the main con­
tribution to the anisotropy in the angular distribu­
tion is made by the term L = 2. If the orienting 
field possesses some symmetry axis, then the 
angular distribution becomes axially symmetric.* 
We restrict ourselves henceforth to the case g 
= K ~ 1/ 2. Then from (2.18) it followst that bJz 

= (- 1 )J -K._; W Jl . In fact, the great majority of 
the emitted a particles is due to transitions to 
the levels J = K and J = K + 1, with l = 0 and 
2, while the admixture of other values of the or­
bital angular momentum is very small. On taking 
(2.21) into account and on normalizing the total 
probability of Cl' decay to unity, we easily obtain 

dw ={I+ A2P2 (p.)} !: , 
... I K (2K- 1) f2 

A2 = v (K + 1)(2K + 3) 1 + WK+1 

x{2Vs[ <K+2)(2K-1) 
3 (2K + 3) exp (-')'edE) WK+I 

[ (K+2)(2K-1) ]]''• 
X 1 3 (2K + 3) exp (-'TedE) WK+1 

..L 5 v2K=1 
I 7WKHVK (K + 1) (2K + 3) 

X [<K + 6) + (K + 2) (2K -3) (2K + 5)]} 
3 (2K + 3) exp (-')'edE) ' 

(3.3) 

where ~E is the separation between the levels 
J = K + 1 and J = K; f2 is the quadrupole polar­
ization of the parent nuclei. 10 Relations (3.3) can 
be utilized to measure the quadrupole polarization 
of nonspherical Ql-active nuclei by means of the 
angular distribution of the Cl' particles emitted by 
them. 

Thus, the concepts of the collective model, 11 

taken together with the assumption that the mean 
free path of the Cl' particle in the nucleus is small, 
enable us to present a complete theory of the a 
decay of nonspherical nuclei. 

I express my gratitude to A. S. Kompaneets, 
Ya. A. Smorodinskil, E. L. Feinberg, and I. S. 
Shapiro for discussing the results of the present 

*For this it is sufficient that the field should have a sym­
metry axis of order > 2. 

tlndeed, even though according to (2.23) the quantities (3 
and X1 are complex, their imaginary part is actually negligibly 
small (in an analogous manner, the imaginary exponent of the 
exponential exp { ig [l" (l" + 1) - l'(l' + 1)]1 is small for these 

z z L d values of the orbital angular momentum which play an important 
xexp {ig [II (II+ 1> -I' (l' + 1)]} cl'~t·oW (.Ql'.Ql"; JL) 4~' role, and we shall everywhere replace it by unity). Comparison 

(3.2) with experiment shows that a.> 0. Therefore we have {3,Xl > 0. 
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work. The author also takes this opportunity to 
express his gratitude to P. 0. Froman for re­
prints of his papers. 
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