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It is shown that it is possible to satisfy with asymptotic exactness the entire chain of equa
tions for Green's functions constructed on the basis of the model Hamiltonian of Bardeen, 
Cooper, and Schrieffer. Thus the asymptotic exactness of the known solution for the super
conducting state is proved without the use of perturbation theory. It is shown that the trivial 
solution that corresponds to the normal state must be rejected at temperatures below the 
critical temperature. 

INTRODUCTION 

In a previous paper1 it has been shown on the 
basis of the model Hamiltonian of Bardeen, Cooper, 
and Schrieffer ( BCS )2 that the thermodynamic 
functions of a superconducting system, which were 
obtained by a variation method in BCS, are asymp
totically exact for V- oo, N/V = const ( V is the 
volume of the system, and N the number of par
ticles). This conclusion was based on the fact that 
each term of the perturbation-theory series, by 
means of which the correction to that solution is 
calculated, is asymptotically small for V - oo. 

Certain objections can, however, be raised against 
such a proof. In fact, if in the model Hamiltonian 
of BCS one takes as the zeroth approximation the 
Hamiltonian of noninteracting particles, then each 
term of the thermodynamic perturbation theory will 
also be asymptotically small, whereas it is well 
known that the existing theory of superconductivity 
is based on the inclusion of precisely these terms. 
On the basis of a partial summation of the dia
grams (ladder approximation) , Prange3 has even 
expressed a doubt that a solution of the supercon
ducting type with a gap in the spectrum of ele
mentary excitations exists at all for the model 
Hamiltonian of B CS. 

In the present paper we show how to obtain the 
same asymptotically exact solution as in references 
2 and 1 without resorting to perturbation theory. 
Besides this it will be shown that for temperatures 
e below the phase-transition temperature ®o the 
solution that appears for V - oo and corresponds 
to the nonsuperconducting state (the trivial solu
tion) must be rejected as failing to satisfy the nec
essary conditions for the exact Green's functions. 

Arguments about the absence of the trivial solution 
for ® < e0 have already been put forward by 
Wentzel4 and by Thouless.5 Thouless based his 
argument on an examination of a special model 
that admits of exact solution. 

2. THE MODEL AND APPROXIMATING HAMIL
TONIANS IN THE THEORY OF SUPERCON
DUCTIVITY 

The model Hamiltonian of BCS is of the form 

H = 2:T1at a1- 2~ L J (f, f') at <1 a_,. a,.+ v!ll, 
I If' 

!ll = T 2:w1(a_1 a1+ at a_~), v;>O, (2.1) 
f 

where f = (k, u), -f = ( -k, -u); u is the spin in
dex, which takes the values +% and -%, and k is 
the momentum; Tf = k2/2m - p,, and p, is the 
chemical potential; and af and a{ are operators 
that satisfy the commutation relations of Fermi 
statistics. J ( f, f') and Wf are real functions which 
have the properties 

J (f, f') = J (f', f) = - J (- f, f'), w_, = -w,. (2 .2) 

For example, 

J (f, f') = + J (k, k') [o (cr - cr')- o (cr + cr')], J (k, k') 

= J(k', k) = J(- k, k') 

[ 6 ( <T - u' ) is the Kronecker symbol]. 

(2.3) 

In the Hamiltonian (2.1) we have introduced a 
supplementary operator vm, which will play an 
auxiliary part in the selection of the required so
lutions ( see later argument, Sec. 4). In the final 
results we shall set v = 0. 
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Following reference 1, we introduce certain 
real functions Af and write the Hamiltonian (1) 
in the form 

H = H 0 + H1, 

H 0 co ~Hr=~{+Ar(\wr-Cr)+Tra"far 
f f 

+ + Ct(a"f a ~f +a -r ar)}, 

H1 =- }v ~J (f, f')B"f Br, 
ff' 

Br = a_,a,-A,, 

(2 .4) 

(2 .5) 

(2.6) 

(2. 7) 

c, = vw1- ~ ~ J (f, f') Ar. (2 .8) 
f 

We now set 

Ar = (a_f ar) 0 = <ai a~f ) 0 , (2 .9) 

where the symbol < ... > 0 means that the averag
ing is taken over a grand ensemble with the Ham
iltonian H0• (We note that the operator H0 does 
not satisfy the condition that the total number of 
particles N = 2::faf~ is conserved, and therefore 
in general Af ~ 0 ). Then 

(2.10) 

and it can be shown ( cf. reference 1) that the 
operator H1, treated as a perturbation, gives an 
asymptotically small contribution for V - oo 

( N/V = const) in each term of the thermodynamic 
perturbation theory. Neglecting the term H1 in 
Eq. (2.4) for this reason, we get the following ex
pression for the thermodynamic potential: 

Q = -A In Sp {e-H,/8}. (2.11) 

The Hamiltonian H0, which we shall hereafter 
call the approximating Hamiltonian, is a quadratic 
form in the operators af' a+, and can be diagon
alized by means of a linear \ransformation ( cf. 
reference 6): 

Uf = U_f ' Vf = - V_f • (2 .12) 

We get as the result 

H0 =U+~Eta/oc,, (2.13) 
f 

Q = U- A] In (l + e-Et19), (2.14) 
f 

U = + ~{At(vw1 -C1) + T1-E1}. (2.15) 
f 

The energy ef an elementary excitation is given 
by 

(2.16) 

The parameters of the canonical transformation 
(2 .12) are connected with Cf and Ef by the re
lations 

u1-VJ=T1jE1, UfVt=-Cr/2£1• (2.17) 

Carrying out the averaging over the grand en
semble with the Hamiltonian (2 .13) explicitly, we 
get the following expressions for the quantities 
Af and the mean occupation numbers ilf: 

A,= <a-r ar>o =- (Cr12Er) tanh (£,128), (2 .18) 

nr= (af ar>u=+{l-(TriE,)tanh (Er/28)}. (2.19) 

Substituting Eq. (2 .18) in Eq. (2 .8), we get the 
equation for C( 

c, = vw1 + 2~] J (f, f') tanh (Er /28) Crl Er. (2.20) 
f' 

These same results can be obtained starting 
from the equations for the two-time (retarded or 
advanced) Green's functions constructed for the 
approximating Hamiltonian H0: 

ida1 (t- n 1 dt = o (t- t') + r 1 a, (t- t') + c, r, (t- t'), 

- idfr (t- t')J dt = r, r,(t- t') -Cr a, (t- t'), (2.21) 

where, for example, the retarded functions are 
given by ( cf. references 7, 8 ) 

a,(t-t')={ar(t); a{(t'))~dv 

= -iS (t- t') <[a1 (t); a7(t') ]+) 0 , 

r,(t-t') = {a~,(t); a{(t'))~dv 

= -i8(t-t')([a~1 (t); a;(t')]+) 0 (2 .22) 

and [ ... ]+ is the anti commutator. The system of 
equations (2 .21) can be solved by means of spec
tral representations, which supplement it with the 
necessary boundary conditions. (Analogous equa
tions for the causal Green's functions have been 
considered by Gor'kov .9 ) The system (2 .21) is 
closed and reduces to (2.20). For ® < ®0, where 
®0 is the temperature of the transition from the 
superconducting to the normal state, this equation 
has two solutions, one of which, Cf = 0, is trivial. 
The nontrivial solution goes to zero for ® = ®0• 

If we adopt for ® < ®0 the nontrivial solution, 
which corresponds to the lowest value of the 
thermodynamic potential (2.14), the thermodynam
ic functions will give a good description of the 
properties of superconducting systems. 

3. THE ASYMPTOTICALLY EXACT SOLUTION 
OF THE CHAIN OF EQUATIONS FOR THE 
GREEN'S FUNCTIONS 

We shall now prove, without resorting to per
turbation theory, that Eq. (2.14) is indeed asymp-
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totically exact for V - oo ( N /V = cons t ) as the 
expression for the thermodynamic potential Q of 
the system with the model Hamiltonian (2.1), and 
(in Sec. 4) that for e < e0 and v = 0 the trivial 
solution Cf = 0 of Eq. (2 .20) must be rejected. 

Starting from the Hamiltonian (2 .1), we get for 
the operator af ( t) in the Heisenberg representa
tion the equation 

. daf 1 "" J (f f') + , + t dt = T 1 a1 - v ~ , a_1 a_ I' at' 1 vwf a_,. (3.1) 
I' 

Let us consider Green's functions of the form 

a ""(t-t')={a,(t)~(t); at(t')}, (3.2) 
f, OJ' 

r 'Yc(t-t') = {a~f(t)!Jl(t); a;(t')}, (3.3) 
f, 

where the operators ~ and m are products of 
pairs of operators a~aq, aia~g' and a_hah, for 
example, 

(3 .4) 

and where all the indices f, q1, ••• , qk, ... , 
gi, ... , hj, ... are different. We note that for 
the Hamiltonian (3.1) the operator for the total 
number of particles, N = ~a:faf, is not an integral 
of the motion, and therefore the Green's functions 
(3 .3) are different from zero. 

Using Eq. (3.1), we get for the functions Gf,\ID 
and rf, 'Yc the equations 

idGt. \ID I dt = o (t - t') <!a1 ~. at l+) + Tt a,. \ID 

-vi_ ~J (f,f') {a~ta-r ar~;a; (t')} 
I' 

+vwfrt.\m + {ati~~; at(t')}, (3.5) 

idr,. >Jc I dt = o (t - t') <!a~, m, a; l+>- Tt r,>Jc 

-~~J (f, f'){a;.a~ra,m; a;(tD 
I' 

a II + . d'Yc + ( ')~ + vwf f'Yc + "'a_1 t dt ; a, t #' (3.6) 

(for brevity we omit the argument t in the opera
tors). 

These equations are an infinite system of 
coupled equations. We shall assume that the sum
mation in (3 .5) and (3 .6) is taken over those values 
of f' that are equal neither to ± f nor to any of 
the indices of the operators involved in ~ and m. 
We are then making in each equation an error of 
the order 1/V, which is admissible. But then the 
Green's functions under the summation signs in 
(3 .5) and (3 .6) will belong to the same class as the 
functions Gf, \ID and rf,>Jc , and consequently the 
chain of equations for these functions will be a 
closed one. 

We shall now show that we can satisfy the en
tire chain (3 .5) and (3 .6) to within terms of order 
1/V if we carry out the averaging in (3.2) and 
(3.3) not with the model Hamiltonian (2.1), but with 
the approximating Hamiltonian (2 .5), i.e., if we set 

Gf, \ID = <~>o a,, 
r,, 'Yc = <!Jl>o ft, 

where, for example, 

at = i{ at (t) a; (t') ) 0 ; 

ft = i{a~1 (t) a; (t'))0 , 

(3. 7) 

(3.8) 

<~)0 = nq, . .. fiqk . .. A;, . .. Ahi. . . (3.9) 

and iiq and Ag are defined by the relations (2 .18) 
and (2 .19). Then the entire chain of equations re
duces to the pair of equations (2.21) for Gf and rf. 

In fact, substituting (3. 7) and (3 .8) in (3 .5) and 
(3 .6), we get 

<~>o idGt I dt = <~>o o (t- t') + Tt <~>o Gt 

- ~ ~ J (f, f') <a-r ar ~>o rf 
f' 

+vw, <~>or,+ i <d~ ld t>o a,, (3.10) 

<!ll>o idft I dt =- r, <!ll>o r,- ~ ~J (f, f') <a; a~1 • !ll>o a1 
f' 

+ VWf (!Jl) 0 af + (id!Jl I df) 0 ft. (3.11) 

We now use the fact that 

(a-r ar~>o = Ar (~)0 , <a;. a~/' !ll>o = Ar (!Jl) 0 • 

Then, according to (3.1) and (2.18)-(2.20), we have 
apart from terms of order 1/V 

( ida;aq I dt) 0 = ~ ~ J (q, q') <a;a~qa-q. aq•- a;. a~q' a_q aq), 
q' 

+vwf (a; a~q - a_q aq>o = 0, 

1 -
- (ida;a~gl dt) 0 = 2TgAg- V ~J (g, g') (l-2ng)Ag• 

g' 

and consequently 

(id~ I dt) 0 = 0, (id!Jl I dt) 0 = 0. (3 .12) 

Thereupon (3.10) and (3.11) reduce to the system 
(2.21). 

Thus we see that (3. 7) and (3 .8) are an asymp
totically exact solution (for V- oo, N/V = const) 
of the entire chain of equations for the Green's 
functions. We have convinced ourselves [see Eqs. 
(3.7)-(3.9)] that all the Green's functions for the 
model Hamiltonian (2 .1) and the approximating 
Hamiltonian (2.5) coincide, and consequently these 
Hamiltonians are equivalent in an asymptotic sense. 

We have here considered Green's functions (3.2) 
and (3.3) which, in general, do not satisfy the con
dition of conservation of the number of particles 
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(the number of creation operators is not equal to 
the number of annihilation operators), and for 
v = 0 [cf. Eq. 2.1)] averages of the type <a_faf>, 
where the averaging is over a grand ensemble with 
the Hamiltonian H, are equal to zero. We can, 
however, obtain all of the results of the theory of 
superconductivity by starting with a chain of equa
tions for Green's functions in which the numbers 
of creation and annihilation operators are equal 
to each other. 

Let us consider Green's functions of the forms 

a,, rol (t- t') = (at(t) rol (t); a; (t'))>, (3.13) 

r,, f', IJl (t - t') = {a~, {t) a_f' (t) ar (t) m {t); a~ (t') )>, (3 .14) 

where the operators rol and m are made up of 
products of operators o~ the form aqaqaga~ga-hah: 

rol = ... a; aq . .. a; a~g a_h ah. . . . (3.15) 

Assuming that all the indices of the operators oc
curring in the Green's functions (3.13) and (3.14) 
are different, we have the following closed chain 
of equations: 

ida1• ml dt = o (t- t') <ml> + r 1 a1. m 

- ~ ~J (f, f") {a~1 a_,.. a, .. rol; a~ (t'))> 
f" 

+ {ar i d:i; a-; (t')}, 

idr1. r.IJlt dt = - r 1 r,. r.IJl 

- ~ "hJ (f. f") {a,a-;..a:,.. a_f' at' m; a-; (t'))> 
f" 

+ . da_ f' a,. + , + {_a-1 L dt ff!; a1 (t ))> 

+ {a~,a-r arid: ; a-; (t'))> (3 .16) 

(the summation index f' is not equal to any of the 
other indices). 

It is easy to verify that the system (3.16) can 
be satisfied, apart from terms of order 1/V, if 
we perform the averaging in (3.13) and (3.14) with 
respect to the approximating Hamiltonian, i.e., 
if we set 

a,, m = (9Jl)0a,, f 1. r. IJl = (ffi)0Ar f 1. (3 .17) 

The system (3 .16) then again reduces to the system 
of equations (2.21). 

By repeating these same arguments one can 
show that the chain for the many-time causal 
Green's functions of the form 

a (ti, ... , ln) 

= (Tar1 (ti) ... at1 {tt) a+1 Ut+I) ... a+1 (tn)), (3.18) 
t+I n 

where T is the chronological-ordering operator 
and the averaging is taken with respectto the 

model Hamiltonian (2 .1) ( v r" 0 or v = 0), can 
also be solved with asymptotic exactness. 

Let us now examine the solutions of (2 .20). We 
set 

C1 = Crp1 = (-1)"+'/. Ccpk, 'Pk, = 1, 

wf = Jf = {(-1)"+'1•Jk, (3.19) 

where k0 is the magnitude of the momentum at 
the Fermi surface, C is the size of the gap at the 
Fermi surface, Jk = Jk,ko• and Jk,k' is the 
kernel J (k, k') averaged over the angular vari
ables. Setting k = k0 in (2.20) and using (3.19), 
we have 

_ C ~ Ef 'Pt 
C - vJ + zv ..;j J 1 tanh 28 E , 

f f 
(3.20) 

where J = %Jk . Multiplying (3 .20) by Jf/J and 
subtracting the0result from (2.20), we get an equa
tion for <pf: 

Jr 1 ~ { , JtJr } - Er 'Pr 
cp, = J + zv ..;j J (f, f)- -J- tanh26 £,. (3.21) 

f' f 

Unlike the corresponding expression in (2 .20) the 
integrand in (3.21) already has no singularities 
as C -- 0 and ® -- 0. 

For sufficiently small interaction parameter 
( cf. references 1 and 6), C ~ ® ~ e - 1 I P are small 
quantities ( p « 1), and we can set C = 0 and 
® = 0 in (3 .21). As the result we then get a linear 
inhomogeneous equation for <pf: 10 

J' 1 "" { , JtJr } 'Pr 
cp, = J + 2V ..;j J (f' f) - -J- -1 T I ' 

f' f' I 
(3.22) 

from which, confining ourselves to the first step 
of iteration, we have 

(3 .23) 

Substituting (3 .23) in (3 .20), we bring the equation 
for the gap C into the following form: 

_ CJ ~ J1 tanh(Ef j28) 
C - vJ + 2V ..;j J• E • 

f f 
(3.24) 

We note that in the case of a factorizable kernel 

J (f, f') = J,J,.jJ, J_, = -J,, (3.25) 

the function (3.23) is an exact solution of (3.21) as 
well as (3 .22). Consequently (3 .24) will in this case 
be valid also for strong interaction. For definite
ness we shall hereafter assume that the interac
tion is factorizable. 

Equation (3 .24) has two solutions. One of them 
goes over for v --. 0 into the well known solution 
of (2.20) (cf. references 1 and 2), which gives a 
gap in the spectrum of the elementary excitations 
(for small interaction p we have C ~ e-1/P), and 
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the other goes to zero for v - 0 [the "trivial" 
solution of Eq. (2 .20) ]. 

Let us find the solution that goes to zero as 
v - 0. In doing so we confine ourselves to the 
case of zero temperature, ® = 0. The extension 
to the case of nonzero temperature presents no 
difficulties ( cf. reference 10), and does not change 
the character of the solution. 

Let us set ® = 0 in (3.24) and go over from the 
summation over f = (k, u) to integration over the 
variable ~ = k 2 /2m - JJ. ( ~ = T f), assuming that the 
Fermi energy is much larger than the mean Debye 
frequency w ( w/JJ. « 1) at which the kernel in 
(3 .20) changes rapidly. We get 

co 

c = vJ + pC~ d~cp2 (~) !V~2 + C2cp2 (£), (3.26) 

where [ cf. Eq. (2.3) ]. 

For small C (we are looking for the solution 
C - 0 as v - 0) we can set cp( ~) ~ cp( 0) = 1 
in the radicand in (3 .26). Integrating by parts and 
neglecting the small quantity C/w where possible, 
we get 

C = vJ- Cp In (C I;;;), (3 .2 7) 
00 

~ = w exp {- ~ In 2; dcp;t de} . (3 .28) 
0 

Solving the equation (3.27), we find 
vJ 

C:::::::vJ jpln-=-~o for v~o (v > 0). (3.29) 
pro 

For weak interaction ( p « 1 ), C/w is small, and 
on setting v - 0 in the same equation (3 .2 7), we 
get the well known expression for the gap in the 
spectrum of elementary excitations of supercon
ductors: 

(3 .30) 

4. THE UNACCEPTABILITY OF THE TRIVIAL 
SOLUTION AT TEMPERATURES BELOW THE 
CRITICAL TEMPERATURE 

We shall now show that the "trivial" solution 
(3.29) must be rejected. For this purpose we use 
the following exact property of the average of the 
operator m that appears in the Hamiltonian (2 .1): 

d l!V(a!)<;O. (4.1) 

This property can be established in the following 
way. Regarding the operator 6.vm as a small per
turbation, we have for the increment of the aver
age value ( cf. reference 8) 

(4.2) 

where ~ m I a! ~E is the Fourier component of 
the corresponding retarded Green's function 
~a! (t); a! (t') ~. For 6.v- 0 we get from 
(4.2) 

d /~"' 1 f ~ 1 , 

£tV"-V / = z;- '\ V a!/E=o' (4.3) 

On the other hand, 
co 

<{a! I a!}E=o =- 2~ ~ J(w)(e"'18-!)w-1 dw, (4.4) 
-co 

where J ( w) is the spectral intensity of the two
time correlation function < m ( t) a! ( t' ) >. 7 Since 
m+ = m, we have J(w) > 0. The second factor in 
the integrand in (4 .4) is also always positive, and 
from this there follows the property (4.1). 

One comment must be made about the formula 
(4.3), namely that the averaging in its right mem
ber must be done not with the approximating 
Hamiltonian H0, but with the complete Hamil
tonian H. In fact, the quantity whose derivative 
is taken in the left member of (4.3) is given by 

<V-Ia!> = ~ 2J Jf (a-tat> 
t 

(4.5) 

which remains finite as V - oo • In the right mem
ber of (4 .3), on the other hand, we have 

{V-la! I m} = 4~ 2J J, Jf' {a: a~,+ a_fat I a;a~f' +a_!' a/'}. 
f, f' (4 .6) 

The summation in (4.6) is taken over two indices. 
Therefore in Eq. (4.6) the terms of order 1/V that 
are dropped in averaging over the ensemble with 
the Hamiltonian H0 give a finite contribution and 
must be taken into account. If we were to do the 
averaging in the right member of (4 .3) with the 
Hamiltonian H0, we would get zero, whereas the 
left member, as we shall see, is different from 
zero. In the left member of (4 .3) we obviously 
can do the averaging with the approximating Ham
iltonian H0• 

Using the formula (2.18) (averaging with the 
Hamiltonian H0 ) and the solution (3.23), we re
write the expression (4.5) in the form 

<v-lm> = _ J = _ _!!!_"' 2 tanh(£1 1 28) 
I 2V k.i rpt E ' 

f f 
(4. 7) 

According to Eq. (3.24), 

C = (v + y) J, (4.8) 

and for the quantity y we get the transcendental 
equation 

_ (r + v) J "' 2 tanh (£1 1 28) 
I - 2V k.i rpf E ' 

f f 

(4 .9) 
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The condition (4.1) can written in the form 

dy I dv ;;> 0. (4 .10) 

Calculating this derivative by using (4 .9), we have 

d"f [ J ~ T~ Ef 
Tv = 2V ~ rp~ -a tanh 28 

f Ef 

1- (v+T)2J" ~ 4 -2 -1 Et] 
-, 48V ~ cpf Et cosh 28-

f 

[ J ~ 2 T~ Ef x 1- 2v ~ cpf - 3 tanh 28 
f Ef 

_(v+"[)2J3 ~ 4-2 -1 Ef]-1 
48V ~ cpf Et cosh 29 > 0. (4.11) 

f 

Let us now set v - 0. The first factor in the 
expression (4.11) is always positive. For y .r 0 
( C .r 0, ® < ®0) the second factor is also positive, 
since by using (4 .9) we can put it in the form 

JC2 ~ 4 -a sinh(Er/8) -Erf 8 
W 7 Cf'f E f 2 cosh• (E f / 28) > 0. 

For the trivial solution y = 0 ( C = 0) the sec
ond factor in the expression (4 .11) is given by 

1 _ _!__ ~ 2 tanh <I r, If 28) 
2V f Cf'r I r, I 
_ _!__ ~ 2 tanh (IT tl/28)-tanh(IT rl/ 280) 

-2V f Cf't ITrl ' 

where the phase-transition temperature ®0 is 
determined from Eq. (4.9) under the condition 
y = 0 or C = 0 (the condition that the gap in the 
spectrum (2.16) of the elementary excitations 
vanishes): 

1 = _!__ ~ 2 tanh<l r, If 2Elo) 
2VLjcpt ITri . (4.12) 

Consequently, in this case the second factor is 
positive for ® > ®0 and negative for ® < ®0; that 
is, for ® = ®0 the trivial solution C = 0 ( y = 0) 
does not satisfy the relation (4 .1), which is a 
direct consequence of the spectral representation, 
and therefore this solution must be rejected at 
temperatures below the critical temperature. 

Thus the exact criterion (4.1), which is ob
tained without neglect of terms of order 1/V, 
enables us to reject the superfluous solution 
C = 0 that was obtained as a result of the passage 
to the limit V - oo (N/V = const). 

In conclusion we formulate briefly the results 
we have obtained. 

1) It has been shown that with asymptotic ac
curacy, dropping terms of order 1/V from the 
equations, one can satisfy the entire chain of 
equations for the Green's functions constructed 
on the basis of the BCS model Hamiltonian. In 

this connection we verify that one can use instead 
of the model Hamiltonian a simpler approxima
ting Hamiltonian, which is a quadratic form in 
the operators. 

2) It has been shown that at temperatures be
low the critical temperature the "trivial solution" 
does not satisfy the necessary conditions for the 
exact Green's functions and must be rejected. 

3) Thus without resorting to perturbation the
ory we again confirm the asymptotic accuracy of 
the results obtained in references 1 and 2. 

From a rigorous mathematical point of view, 
however, certain objections can be raised against 
the proofs presented here. It still has to be shown 
that when terms of order 1/V are dropped from 
the equations the solution also changes by an in
finitesimal amount. One of the writers 11 has 
carried out all the necessary estimations by an 
entirely different method and has shown that 
the fractional discrepancies between the eigen
values of the model Hamiltonian and the approxi
mating Hamiltonian, and also between the corre
sponding Green's functions, will vanish in the 
limit V- oo ( N/V = const). 
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